Simple and Explainable Machine-Learning based
proactive Autoscaling for Kubernetes

Eileen Huang Harivallabha Rangarajan
Carnegie Mellon University Carnegie Mellon University

Abstract—Kubernetes, the preeminent open-source platform
for cloud resource management [1], provides reactive autoscal-
ing out-of-the-box. Recent work on proactive autoscaling with
LSTMs and Transformers have outperformed this default in
resource allocation, but at the cost of the complexity, data-
intensity, inference-time latency and opacity associated with large
machine-learning (ML) models.

We propose proactive autoscaling approaches focusing on two
complementary goals: explainability and simplicity, demonstrat-
ing that the interpretable time-series forecasting model N-BEATS
and classical ML methods like linear regression match the results
of large ML models while remaining simple and explainable.

Index Terms—Machine Learning, Auto-scaling, Kubernetes

I. INTRODUCTION

Cloud computing has revolutionized the management and
deployment of applications by providing a powerful service
abstraction. Instead of owning and maintaining physical in-
frastructure, organizations can access virtual resources over
the Internet known as Infrastructure-as-a-Service (IaaS).

The “Cloud” allows for lower cost, greater scalability, and
flexibility in compute due to economies of scale, but at
the cost of additional complexity in resource management.
Efficiently allocating compute and storage across dynamic
workloads is difficult - resource mismanagement can lead to
under-provisioning (causing performance bottlenecks) or over-
provisioning (leading to wasted costs). The online algorithms
for scaling aim to approximate the offline theoretical optimiza-
tions for when to scale horizontally, which refers to increasing
and decreasing the number of compute units allocated based
on the rate of client request.

Kubernetes, the leading cloud resource management plat-
form, performs the allocation of lightweight compute units
called containers through a rule-based process called Hori-
zontal Pod Autoscaling (HPA). HPA scales the number of
compute units (called "Pods’) based on metrics such as CPU
utilization or Queries Per Second (QPS). However, such tra-
ditional reactive scaling methods can be suboptimal and lead
to temporary service degradation due to delayed responses to
fluctuating client demand. Proactive autoscaling addresses this
limitation by predicting future workloads and preemptively
scaling compute resources for higher throughput and lower
response latency.

Author names arranged based on alphabetical orders.

Hong Sng Jim (Chia-Tse) Shao

Carnegie Mellon University Carnegie Mellon University

II. RELATED WORKS

Existing machine learning and deep learning-based ap-
proaches explore proactive autoscaling range from classical
time-series models like ARIMA (Auto-Regressive Integrated
Moving Average) to deep learning-based techniques such as
bidirectional LSTMs and Transformers.

Bidirectional Long Short-Term Memory (Bi-LSTM) is a
type of recurrent neural network (RNN) architecture, particu-
larly useful for time-series prediction. It extends the traditional
LSTM model by introducing two LSTM layers: one that
processes input data in a forward direction (past to future) and
another that processes data in a backward direction (future
to past). This dual-layer setup enables Bi-LSTM to retain
information from both past and future contexts, allowing it
to capture temporal dependencies in both directions, which
enhances prediction accuracy in complex time-series tasks.
Dang-Quang and Yoo’s Bi-LSTM-based autoscaling architec-
ture [2] demonstrated higher accuracy and lower prediction
error compared to ARIMA, and at the same time allowing for
faster and more precise scaling in Kubernetes environments.
More recent works have focused on techniques such as trans-
formers that incorporate attention mechanisms.

Transformers are a class of deep learning models originally
developed for natural language processing (NLP) but have
recently been adapted for time-series prediction. Unlike re-
current models such as LSTM or Bi-LSTM, which process
data sequentially, transformers leverage an attention mecha-
nism that enables them to process entire sequences at once.
This approach allows transformers to capture relationships
between data points over long sequences more effectively
and efficiently, making them well-suited for time-series tasks
where dependencies can span multiple time steps. Moreover,
studies by Shim et al. [3] introduced transformer models as
an alternative for handling long-sequence data, such as high-
variability workload patterns observed in NASA and FIFA
datasets, showing superior performance over Bi-LSTM and
LSTM models due to their attention mechanisms.

Although these approaches demonstrate impressive perfor-
mance as predictive agents, they lack the tenets of explain-
ability and interpretability. A core focus of our work is on
exploring simpler and more explainable models that match
the performance of these larger and opaque techniques.

request_count
timestamp
1995-07-01 ©6:60:00 42
1995-07-01 ©6:0l1:00 6l
1995-07-01 00:082:00 57
1995-97-01 PO:03:00 71
1995-87-61 ©0:84:00 78
1995-87-01 90:05:00 54
1995-07-61 00:86:00 52
1995-87-61 90:87:80 68
1995-07-61 ©0:88:00 47
1995-07-61 ©6:89:00 46

Fig. 1. Dataset within minute scope

Minute-to-Minute Correlation Heatmap

1.00

2Minute-1Minute-0

0.80

Minute-0 Minute-1 Minute-2 Minute-3 Minute-4 Minute-5 Minute-6 Minute-7 Minute-8 Minute-9

Fig. 2. Minute-to-Minute Correlation Heatmap

III. METHODOLOGY
A. Dataset

The dataset used for this project is the NASA-HTTP logs,
which contain detailed records of HTTP requests made to the
NASA Kennedy Space Center WWW server over a two-month
period [6]. This dataset supports our development of a predic-
tive model for auto-scaling by providing a historical record
of traffic patterns and request count. The dataset provides
high-resolution, one-second granularity in request timestamps,
which allows precise capture of time-based traffic fluctuations.
This resolution is suitable for our goal of predicting minute-by-
minute request counts for auto-scaling purposes, as it enables
the model to learn both short-term spikes and regular patterns
within the traffic data. The following images show the example
dataset and the correlation between each minute, which is
good for our machine learning models to capture temporal
relationships.

The NASA-HTTP dataset consists of two separate log files:
The first log captures all HTTP requests from July 1, 1995,
00:00:00 to July 31, 1995, 23:59:59, spanning a total of 31
days. The second log covers requests from August 1, 1995,
00:00:00 to August 7, 1995, 23:59:59, totaling 7 days. In this
two-week dataset, a total of 3,461,612 requests were recorded.
An important gap in the data occurs from August 1, 1995,

14:52:01 until August 3, 1995, 04:36:13, as the server was
temporarily offline due to Hurricane Erin.

B. Machine Learning

In our approach to building a predictive model for autoscal-
ing, we experimented with several complex deep learning
models to predict the count of requests of the next minute. The
models use the previous 10 minute request counts as input and
output the next minute request count. We also sliced our train
and test dataset using the same cut-off point as other papers.
The models we implemented included Informer, Autoformer,
N-Beats [5], and DeepAR, each designed to capture complex
temporal patterns in the data. We evaluated each model based
on mean squared error (MSE) and model efficiency, including
training and inference times.

After the experiments are done, we will overlap this graph
with results from NBeats / Linear Regression.

C. Evaluation Metrics

To assess the performance and suitability of our ML model
for autoscaling in a Kubernetes environment, we will use
the following evaluation metrics which also align with the
benchmark we would like to compare with:

Mean Squared Error (MSE): This metric measures the
average squared difference between the actual and predicted
request counts. It penalizes larger errors more heavily, helping
to identify how well the model captures general request
patterns.

Root Mean Squared Error (RMSE) on request count: RMSE
provides a more interpretable measure of error by taking the
square root of MSE, offering an understanding of the average
error magnitude in the same units as the request counts. Lower
RMSE values indicate better predictive accuracy.

Mean Absolute Error (MAE) on request count: MAE cal-
culates the average absolute difference between actual and
predicted values, providing an intuitive measure of error by
treating all deviations equally. This metric is less sensitive to
large errors compared to MSE and RMSE.

R-squared (R?) on request count: This metric evaluates the
proportion of variance in the request counts that the model can
explain, with a value closer to 1 indicating higher predictive
strength and model reliability.

Model Prediction Time: In a Kubernetes autoscaling con-
text, prediction latency is critical. We measure the time re-
quired for the model to generate each request count prediction,
ensuring that predictions are fast enough for real-time scaling.

Number of Pods: To gauge the practical impact of our
autoscaling strategy, we track the number of pods generated
by the model’s predictions. This helps us assess whether the
model effectively scales resources based on predicted request
load and maintains an efficient resource allocation.

Auto-Scaling Matrix: To provide a holistic view on our over-
all system performance, we need a more specific metric for
determining how good our auto-scaling policy has improved
compared to the non-scaling policy. The provisioning accuracy

Queries Per Second (QPS) Data

Virtual
Users

';', — Kubernetes Cluster

d : Conrol B - "
Bag 4
: Plane Machine Learning
simulated HTTP L[] hag

Predictor
Requests based
Fig. 3. System Architecture

on real user data

0o and Oy describes the relative amount of resources being
over-provisioned or under-provisioned.

100 & — 9,0
GU[%]:TZ%/M (1)
t=1
100 & — 7,0
dol) = 10 3 ezt = r-0) @

t

1
IV. EXPERIMENTAL SETUP
A. Architecture

In order to test our predictions, we built the testing in-
frastructure as figure 3. We deploy a mock application on a
Kubernetes cluster, which contains several compute nodes that
serve as backend servers for the NASA website. A cluster is
simply a number of nodes managed by a control plane that
handles scaling them horizontally.

Apache K6, an open-source load testing tool, is used to
simulate client HTTP requests based on the NASA dataset. In
this process, virtual users, an abstraction similar to threads,
periodically send HTTP requests to our mock application
based on the request rate of the current timestamp.

These requests are received by a web proxy, which performs
two operations: first, it acts as a load balancer and routes these
requests to one of the current compute nodes, where a mock
application returns a 200-OK response; secondly, it sends
QPS metric data to our metrics framework, which includes a
Prometheus database and a Grafana visualization dashboard.

These QPS metrics are then used as input data to the
machine learning predictor within our scaling agent, which
then outputs the estimated number of compute nodes required.
With this prediction, we notify the control plane to scale the
number of nodes currently being provisioned. Therefore, the
scaling agent autonomously handles autoscaling based on real-
time client requests.

B. Implementation

1) Development Environment and Infrastructure: The ex-
perimental setup runs in GitHub Codespaces using a k3d
(lightweight Kubernetes) cluster. The environment is auto-
matically provisioned through a custom Docker container
with all necessary development tools and dependencies. A
single-server Kubernetes cluster is configured with exposed
ports for monitoring (Prometheus: 30000, Grafana: 32000)
and application services (MockApp: 30080, Heartbeat: 31080).

The setup process is automated through initialization scripts
that handle everything from creating a local Docker registry
to deploying core services.

2) Application Stack and Monitoring: The core application
consists of an REST API service for load generation. The
monitoring stack includes Prometheus for metrics collection
(scraping every 5 seconds), and Grafana for visualization
for log aggregation. The web application is configured with
specific resource limits (CPU: 1000m, Memory: 256Mi).

3) Load Testing Infrastructure: The load testing uses
Grafana k6 to simulate realistic traffic patterns based on
NASA web server logs. The system creates virtual users (VUs)
equal to the maximum expected load, with each VU having
a probability of sending requests that match historical data
patterns.

4) Monitoring and Metrics Integration: The monitoring
system collects metrics from multiple sources including ap-
plication endpoints, Kubernetes system metrics, and custom
metrics. Grafana dashboards are pre-configured to visualize
application performance metrics and load test results.

5) Scaling Agent Monitoring and Logic: The scaling agent
implements an automated scaling system that uses machine
learning to predict and adjust the number of application
replicas. The agent integrates with Kubernetes through the
client. AppsV1Api() and monitors the application metrics using
Prometheus, querying the request rate through the internal
cluster DNS. The system maintains a 10-minute sliding win-
dow of request history using a deque data structure.

The RequestPredictor class implements a linear regression
model that predicts the required number of replicas based on
historical request patterns. The model takes a sequence of
10 minutes of request counts as input and predicts the next
minute’s request volume. The prediction is then converted to
the number of needed replicas by assuming that each replica
can handle 100 requests per minute (configurable). The model
is pre-trained and loaded from a pickle file, making real-time
predictions based on the observed traffic patterns.

V. RESULTS

Despite the sophisticated architecture of other complex
models (such as transformers), we found that a simpler linear
regression model achieved comparable performance, with an
MSE of 186.8. This performance was similar to the best
performing deep learning models (e.g., N-Beats with an MSE
of 185), but linear regression required significantly less com-
putational time for both training and testing. This simplicity
and efficiency make linear regression an appealing choice for
our autoscaling task, where speed and resource efficiency are
critical.

A. Comparison with other models

Figure 4 shows the comparison of Mean Squared Error
(MSE), Mean Absolute Error (MAE), and R2 Score with a
baseline model that directly uses the request count from the
previous minute as the request count from the current minute.
We can see that the linear regression model outperformed

Model Baseline Linear Regression

MSE 268.52 185.2
MAE 12.26 10.33
RA2 0.58 0.70

Fig. 4. Baseline vs. Linear Regression

Model NBeats Linear

Regression

Informer* | Autofomer DeepAR

MSE 186.2 193.6 185 191 185.2

Fig. 5. Explored Model Performance Comparison

all metrics, demonstrating its capability to capture temporal
trends.

Figure 5 summarizes the Mean Squared Error (MSE) scores
across the Informer model we reproduced and other models
we explored. Figure 6 demonstrates the MSE scores with other
commonly used machine learning models in autoscaling from
related works.

The prediction time of each sample with the linear regres-
sion model is 0.0014 seconds, and Figures 5 and 6 show that
the linear regression model has similar results to the best one.
Thus, choosing linear regression provides a balance between
accuracy and efficiency, making it well-suited for deployment
in a Kubernetes environment where real-time scaling decisions
are important.

B. Explainable Feature Relationship

The linear regression model provided explainability by
revealing how request counts from the previous 10 timestamps
influence the prediction of the current request count. The bar
chart in Figure 7 illustrates the magnitude of the regression
coefficients for each time step, with 7" — 1 (the most recent
request count) showing the highest coefficient, indicating that

Maodel ARIMA LST™M Bi-LSTM Linear
Regression
MSE 196.9 184.3 186 185.2

Fig. 6. Model Performance compared to other papers

Feature Importance by Time Step (Linear Regression Coefficients)

T9

T8

T7

6

T5

T4

T3

T2

T1

0 2 4 6 8 10 12
Coefficient Value

Fig. 7. Feature Importance by Time Step

Average Residuals by Weekday
02
) . I I

-

I||||||I i
.

Fig. 8. Residuals by different Time Granularity

it has the most significant impact on the predictions. As time
steps move further into the past (" — 10 to T" — 2), their
influence diminishes, suggesting that recent traffic patterns are
more critical in predicting the next request count. Thus, we
can see that the linear regression model is explainable and
trustworthy to understand scaling decisions in an autoscaling
framework.

C. Residual analysis

The residual analysis revealed distinct patterns in the
model’s predictions. Positive residuals, where actual values
exceeded predictions, were observed predominantly during
midday hours and on weekdays, indicating under-predictions
in these periods. Conversely, negative residuals, where pre-
dictions exceeded actual values, occurred mostly at night
and on weekends, suggesting over-predictions during these
times. These trends highlight areas where the model could be
refined to improve accuracy in the future, such as incorporating
additional features or adjusting the model to better capture
temporal variations in traffic patterns.

D. Performance

Figure 9 shows the actual and predicted trends. We can
see that the linear regression model is keeping up with the
actual trend, proving its ability to capture the temporal trend.
However, it still needs improvement in some peaks or lows,
which is what we could improve in the future.

Figure 10 translates the ML model evaluation to a more
systematic interpretation. Linear Regression Model performs
worse in both under-provision and over-provision ratios, which
means the system is potentially not cost efficient by choosing
this model. We believe the reason this is not revealed in MAE
is because the low request rate will have an amplification effect
on equation 1 and 2.

E. System Performance

Similarly to the chosen benchmarks, we aim to provide a
visualization of the results as Figure 11.

Backhand calculations show that proactive machine-learning
based autoscaling can be about 20% closer to the optimal
number of compute units (pods) required at any one time,
resulting in both lower client request latency and a 20%
decrease in cost associated with provisioning cloud resources.

This is a significant cost reduction that scales linearly with
the number of resources deployed by a specific application,

Actual vs Predicted Request Counts

S
8

— Actual
Predicted

Request Count
o 5 I~ G <]
o g8 & g o

g

il
NWMMJ\W w

10000 15000 20000 25000
Time (Test Samples)

°

Fig. 9. Actual vs. Predicted Request

Model ARIMA LST™ Bi-LSTM Linear

Regression

Under-provision | 9.96 9.03 8.22 10.59

Over-provision | 22.73 23.92 25.84 41.17

Fig. 10. Comparison with Auto-scaling Metrics

and thus has considerably large potential for further cost
savings.

VI. CONCLUSION

In conclusion, our findings demonstrate the viability of sim-
ple and explainable machine learning-based proactive scaling
methods.

Firstly, they present a significant upgrade over the Ku-
bernetes default HPA, offering a 20% more efficient cloud
resource allocation, which translates to reductions in both
over-provisioning (thus reducing cost) and under-provisioning
(thus reducing client request latency).

Furthermore, our methods also improve on other existing
transformer or deep-learning based machine learning methods
because they meet our goals of explainability and simplicity,
showing that the interpretable time-series forecasting model N-
BEATS and classical ML methods like linear regression can
match the results of large ML models without the complexity
and inference-time overhead of the latter. However, it is
important to note that our models tend to be less resistant
to outliers during spikes in demand compared to these larger
ML models, perhaps because of their simplicity.

All in all, our research shows that it is possible to achieve
a balance between optimality and complexity; providing an

21 2100
Number of HTTP requests

20 Number of pods allocated by PCA t2000 5
Number of pods allocated by HPA =
» 194 t1900 £
8 €
S £
8 18 4 t1800 £
® 1700 H
5 17 t E
H g
§ 16 1600 ©
& 8
15 1500 ¥
5
14 F 1400 =

13 F 1300

0 20 40 60 80 100
Time (minutes)
Fig. 11. Target Benchmark from [3]

efficient machine-learning based approach to the functional
goal of autoscaling cloud resources without sacrificing the
non-functional goals of explainability and simplicity.

REFERENCES

[1] CNCF SURVEY 2020.

[2] Dang-Quang, N. -M., & Yoo, M. (2021). Deep Learning-Based Au-
toscaling Using Bidirectional Long Short-Term Memory for Kubernetes.
Applied Sciences, 11(9), 3835. https://doi.org/10.3390/app11093835.

[3] S. Shim, A. Dhokariya, D. Doshi, S. Upadhye, V. Patwari and J. -Y. Park,
”Predictive Auto-scaler for Kubernetes Cloud,” 2023 IEEE International
Systems Conference (SysCon), Vancouver, BC, Canada, 2023, pp. 1-8,
doi: 10.1109/SysCon53073.2023.10131106.

[4] Boge, FJ. Two Dimensions of Opacity and the Deep
Learning Predicament. Minds & Machines 32, 43-75 (2022).
https://doi.org/10.1007/s11023-021-09569-4

[5] N-BEATS: Neural basis expansion analysis for interpretable time series
forecasting. https://arxiv.org/abs/1905.10437

[6] Two Month’s Worth of All HTTP Requests to the NASA Kennedy
Space Center. Available online: fttp://ita.ee.lbl.gov/html/contrib/NASA-
HTTP.html

[7]1 Herbst, N., more: Ready for Rain? A View from SPEC Research on the
Future of Cloud Metrics. CoRR abs/1604.03470 (2016)

VII. APPENDIX

A. Relevance to 15-712 Course Goals

Uses machine learning to provide efficient, explainable
and simple improvements to resource allocation in distributed
systems and applications.

B. Outline of work

The project involves two major parts: machine learning
model development and testing within a Kubernetes environ-
ment. Below is a breakdown of the tasks:

1) Eileen: Data Preprocessing: Preprocess and aggregating
the NASA-HTTP data by minutes to create a time series
suitable for training. Model Implementation and Training:
Developing the ML model, using both complex and simpler
models, and training it on the prepared data. Performance
Evaluation: Evaluating model performance using metrics such
as MSE, RMSE, and R? to identify the optimal model for
integration.

2) Hari: Configuration Tuning: Setting parameters like
cool-down time and fine-tuning the provisioning metrics to
match scaling needs. Metric Provisioning Testing: Ensuring
that metrics are appropriately captured and that they align with
autoscaling requirements. Model Integration: Integrating the
trained ML model to provide scaling predictions for K8s pods
in real time.

3) Hong: Kubernetes Setup: Setting up the K8s cluster and
ensuring the Kubernetes environment is ready for autoscaling
tests. Load Testing: Implementing load testing tools to simu-
late varying levels of traffic for testing autoscaling behavior
according to the chosen datasets Telemetry: Using Prometheus
/ Grafana to capture system metrics as input for our autoscaler
+ evaluate autoscaler performance Deployment: running the
toy web application on the kubernetes cluster

Fig. 12. Experiment Snapshot: Load testing and pulling metrics

Fig. 13. Experiment Snapshot: Environment Setup

4) Jim: HAProxy Setup: Configuring HAProxy to simulate
and manage HTTP request traffic to the application. Toy
Web Application: Developing a simple web application that
sends acknowledgments for received requests, allowing for
meaningful load testing and response tracking.

