
GPU Accelerated Kinetic Meshfree Solver
for Inviscid Compressible Flows

Undergraduate Thesis

Submitted in fulfillment of the requirements of

BITS F423T Thesis

By

Harivallabha Rangarajan

ID No. 2016B4A70519H

Under the supervision of:

Dr. Anil Nemili

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, HYDERABAD

CAMPUS

Declaration of Authorship

I, Harivallabha Rangarajan, declare that this Undergraduate Thesis titled, ‘GPU Accelerated

Kinetic Meshfree Solver for Inviscid Compressible Flows’ and the work presented in it are my

own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree at this

University.

� Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly attributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed: Harivallabha Rangarajan

Date: 26.11.2020

i

Certificate

This is to certify that the thesis entitled, “GPU Accelerated Kinetic Meshfree Solver for Inviscid

Compressible Flows” and submitted by Harivallabha Rangarajan ID No. 2016B4A70519H in

partial fulfillment of the requirements of BITS F423T Thesis embodies the work done by him

under my supervision.

Supervisor

Dr. Anil Nemili

Assistant Professor,

BITS-Pilani Hyderabad Campus

Date:

ii

“One small step at a time. One task, one problem, one challenge. Over and over again.”

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, HYDERABAD CAMPUS

Abstract

Master of Science (Hons.), Mathematics

GPU Accelerated Kinetic Meshfree Solver for Inviscid Compressible Flows

by Harivallabha Rangarajan

A Least Squares Kinetic Upwind Method (q-LSKUM) based Meshfree Solver has been developed,

and implemented in C++. This scheme has been extensively researched for over 20 years and is

used for modeling the flow physics in aerodynamic shape optimization problems. In this thesis,

we implement the C++ version of the serial and parallel meshfree solvers, and benchmark it

against Fortran.

First, the serial version of the primal solver is implemented and validated. Second, the CUDA

parallel version of the primal solver is implemented and benchmarked. Numerical simulations

are performed with a NVIDIA M5000 GPU. The q-LSKUM algorithm lends itself beautifully to

data parallelism, which we make use of to accelerate it on the GPU. The C++ CUDA version

offers a speedup of 15x on the coarsest grid, and 23x on the finest grid.

We present extensive comparisons against the Fortran serial and parallel versions, to both

of which C++ performs comparably well. We evaluate the two codes on five different grids, with

the coarsest grid containing 40K points, and the finest one containing 2.5M points. These grids

have been generated using a Quadtree based point refinement method. With scope for even

further optimizations of the C++ serial and CUDA versions, this thesis presents us with very

promising directions for future research.

Acknowledgements

I would like to thank my supervisor Dr. Anil Nemili, for providing constant support, guidance

and direction; for introducing me to Scientific Computing, and for being a great friend. This

thesis would not have been possible without Anil.

Additionally, I am grateful to Nischay, Kumar, and Rupanshu for providing valuable feed-

back and support in collecting different code benchmarks. And, I am lucky to have found such

good friends in them. Nischay has been a breath of fresh air.

I would like to express my gratitude to Mahesh Doijade, NVIDIA for his inputs on optimizing

the GPU code; and Professor Suresh M. Deshpande, Jawaharlal Nehru Centre for Advanced

Scientific Research, for guiding our group, and pioneering much of the research around kinetic

numerical meshfree methods used in the Indian aerospace programs.

Finally, I would be remiss if I were not to mention Ritika Ramchandani, Shreyas Ravishankar,

Mukundhan Jayaraman, Abhijith Ganapathiraman, and Bharathwaj Suresh for being the amazing

friends that they are, and for being an integral part of my journey at BITS Pilani.

v

Contents

Declaration of Authorship i

Certificate ii

Abstract iv

Acknowledgements v

Contents vi

List of Figures viii

Abbreviations ix

1 Introduction 1

2 Related Work 2

2.1 Background . 2

2.1.1 A gist of the problem statement . 2

2.1.2 Overview of the proposed solution, and algorithm properties 3

3 Least Squares Kinetic Upwind Meshfree Solver 7

3.1 The Kinetic Meshfree Method: q-LSKUM . 7

3.1.1 Basic theory of LSKUM . 7

3.1.2 Second-order accuracy using q-variables 10

4 GPU Accelerated Meshfree Solver in C++ 14

4.1 Data Structures . 15

4.2 Codeflow, Functions and Sub-functions . 16

5 GPU Acceleration with CUDA 20

5.1 The CUDA Programming Model . 20

5.2 Parallel Meshfree Solver . 23

5.2.1 The design of the parallel solver in a nutshell 23

5.2.2 Implementation Specifics of the Parallel Solver 24

vi

Contents vii

6 Results and Discussion 26

6.1 Performance Analysis of the Meshfree Solvers: C++ and Fortran 27

6.1.1 Serial version . 27

6.1.2 GPU version . 27

6.1.3 Kernel Performance Analysis Tables . 30

7 Concluding Remarks and Future Work 34

A Input File Format; Pseudocode; Terms and Definitions 35

A.1 Input Point Distribution . 35

A.1.1 HDF5 . 35

A.1.2 Quadtree point refinement algorithm . 35

A.2 Algorithm Pseudocode . 36

A.3 Terms and Definitions . 40

Bibliography 42

List of Figures

2.1 Point clouds for meshless schemes. [8] . 2

2.2 Robustness of the WLSKUM-ED over conventional LSKUM on tampered point
distribution [1] . 4

2.3 Pressure Contours for Subsonic flow test case over NACA 0012 Aerofoil using
q-LSKUM. Without inner iterations (left) and with inner iterations (right) [1] . . 5

2.4 Neighbourhood stencil around a far-field boundary point [6] 5

3.1 Connectivity of node P0 in two dimensions. [6] 9

4.1 Definition of the Point Struct . 15

5.1 Distribution of transistors on the NVIDIA GPU vs. the CPU [11] 21

5.2 Memory Hierarchy [11] . 22

5.3 Example Matrix Addition Kernel [11] . 23

6.1 Relative speedup of the C++ code. 32

6.2 Relative speedup of the Fortran code. 32

6.3 RDP Comparison across grids, with optimal number of threads per block. 33

6.4 C++ RDP variation with threads per block. 33

viii

Abbreviations

LSKUM Least Squares Kinetic Upwind Method

GPU Graphical Processing Unit

AD Automatic Differentiation

R-H Rankine-Hugoniot

RANS Reynolds-Averaged Navier-Stokes

KFVS Kinetic Flux Vector Splitting

SM Streaming Multiprocessor

ix

To Krishnamachari, my grandpa. For all that I am, and shall ever be.

x

Chapter 1

Introduction

Meshless methods have gained increasing adoption over the last couple of decades for comput-

ing flows over complex geometries. Advancements in computational capabilities have enabled

researchers to perform increasingly complex simulations and experiments. The generation

of meshes over the complex geometries for for modelling aerodynamic flows, however, still

poses large computational difficulties. On the other hand, improvements in meshfree methods

have offered rich and promising alternative directions. In this thesis, we implement a Least

Squares Kinetic Upwind Method (q-LSKUM) based Meshfree Solver in C++, and accelerate

it on the GPU. We show that the GPU parallel solver offers a significant speedup over the

serial solver. We also present extensive benchmarks with the Fortran version of the solver,

and show that the C++ solver performs comparably well with Fortran. In future, we wish to

leverage multiple GPUs to further enhance the time efficiency of the solver. From a software

perspective, the implementation aims to exploit the richness and efficiency of the C++ language,

and avails the promise of continued support and enhancements from both the C++ as well

as the CUDA C++ community thus motivating the desire for a C++ implementation of the solver.

The rest of the thesis is organized as follows: Chapter 2 offers insight into Related Work; Chapter

3 explains the theory of the LSKUM solver; Chapter 4 details implementation specifics of the

serial solver; Chapter 5 offers an introduction to the NVIDIA CUDA programming model and

explains the parallel implementation of the solver; In Chapter 6 we present extensive bench-

marks and comparisons with Fortran; Finally, Chapter 7 presents the conclusions, and mentions

directions of Future Work.

1

Chapter 2

Related Work

2.1 Background

The Least Squares Meshfree Method has been extensively researched by the likes of Deshpande

[3, 5, 6, 10] for over two decades. The two main classes of Meshless schemes for fluid flows are

based on (1) Least Squares, and (2) Radial Basis Functions [8]. In this section, we provide a

brief introduction to the developments leading to the q-LSKUM solver.

Figure 2.1: Point clouds for meshless schemes. [8]

2.1.1 A gist of the problem statement

The goal is to develop a robust algorithm to numerically solve the Euler conservation laws for

inviscid compressible flows. This involves finding solutions to the Euler equation - a partial

differential with respect to time, and space. And, we wish to do this in the meshless/unstructured

2

Chapter 2. Related Work 3

grid regime. We consider the 2-D case here (which can later be extended to three dimensions

as well). Finding the solution to the 2-D RANS equation involves two key steps: Spatial

discretization, and then integration of the semi-discrete law.

2.1.2 Overview of the proposed solution, and algorithm properties

For the integration, we make use of a four-stage Runge-Kutta (SSP-RK3) time marching algo-

rithm, with local time stepping - to get the steady state solution. This is essentially a fixed point

iterative solver.

At the heart of the q-LSKUM solver is a Least Squares based spatial discretization technique. The

least squares method has proven to be quite powerful in the meshless regime, and captures the

pressure contours, and shocks accurately [6]. Although theoretically the least squares method has

not been proven to uphold conservation, empirically it is shown to satisfy the Rankine-Hugoniot

(R-H) shock jump conditions thus giving accurate location of shocks and jumps. The Least

Squares method is also robust to perturbations in the input point cloud distribution.

The weighted least squares method minimizes a weighted sum of squared deviations post trunca-

tion of the Taylor Series around the target point, whose spatial derivative we want to approximate

numerically after discretization. Post discretization, we need to solve an over-determined system

of linear equations to get the required spatial derivative. We get a closed-form expression for the

approximate spatial derivatives in terms of the neighbouring points (obtained by minimizing the

sum of squared deviations).

There are several points to note here. One, Since the process involves finding the solution to

an over-determined linear system, an appropriate selection of the weights above has an impact

on the properties of the solution. This impact could be in the form of the condition number of

the Least Squares (LS) matrix that has an effect on the stability of the solution; It could be

in the form of spectral resolution of the solution - one could select an optimal configuration of

weights such that the resulting solution has better spectral properties, and captures the lower

wavelengths as it does for the higher wavelengths. Likewise, it could affect the robustness of the

solver: By avoiding rank-deficiency in the LS matrix, one could make the solver more robust.

This is precisely what Deshpande and Arora show in [1]: By choosing the weights along the eigen

directions of the spatial co-ordinates, they ensure that the LS matrix is of high rank. Perturbed

input point distributions that lead to smeared pressure contours in the solution often have rank

deficient LS matrices as compared to the so called good point distributions.

Chapter 2. Related Work 4

Figure 2.2: Robustness of the WLSKUM-ED over conventional LSKUM on tampered point
distribution [1]

The effect of choosing such weights is illustrated in the figure above: Tampered point distribution

(left); Results with conventional LSKUM, solution diverges (centre); Results with conventional

LSKUM, solution diverges (centre); Results with WLSKUM-ED, solution converges (right).

Coming to the second point: the formal accuracy of the LS solution depends on the loca-

tion of the truncation in the Taylor Series expansion. For instance, truncation beyond the

linear terms leads to first-order accurate spatial derivatives. Deshpande and Ghosh [7] show

that it is possible to achieve second order accuracy by employing a method known as defection

correction. Defect correction is used to obtain a closed form solution for the spatial derivative

that is similar in form to the first order solution but actually has properties of the second order

solution. In other words, we obtain second order accuracy while retaining a form similar to the

first order solution - this equips the LS matrix with the properties of the first order solution -

its robustness, and conditioning; and, enables the second order accurate solution to have crisp

flow features whilst giving the smooth, wiggle-free pressure contours just like in the first order

accurate numerical scheme (which, on the other hand, smears the flow features). The pressure

contours captured by the second order accurate LS solution is sharper, and does not smear close

to the boundary. It should be noted that this defect correction procedure, in practice, is to be

implemented with inner iterations to achieve this second order accuracy (in practice). Defect

correction, therefore enables second order accuracy by using perturbed or modified Maxwellian

distributions of the velocity.

We refer the reader to [7], [6] and [1] for a more thorough discussion of the above. The entire

pipeline is formulated and implemented in the microscopic regime described by Boltzmann’s

2-D equations for the Kinetic theory of gases. This is referred to as Kinetic Flux Vector Split-

ting (KFVS). Following this, the solution is propagated upward to the macroscopic regime in

the Eulerian limit through the moment method strategy. By taking the inner product of the

moments and Maxwellian derivatives, and integrating it in the Eulerian limit we arrive at a

Chapter 2. Related Work 5

Figure 2.3: Pressure Contours for Subsonic flow test case over NACA 0012 Aerofoil using
q-LSKUM. Without inner iterations (left) and with inner iterations (right) [1]

scheme at the macroscopic level [7]. In this manner, we develop a spatial discretization algorithm

to solve the differential equation at the Boltzmann level and then upwind it to the Euler equations.

Now, two issues remain: One, we need to formulate an update rule for the time derivative of the

conserved vector. Two, we need to solve a potential problem in the perturbation procedure used

in defect correction.

For the first, we (again) derive update rules for the interior, wall and outer (boundary) points at

the Boltzmann level and then use the moment method strategy to upwind it to the Euler level.

The interior point updates are easy to perform because of the availability of suitable neighbouring

points. At the wall and boundary points, we need to be cognizant of the incoming and outgo-

ing fluxes and derive an appropriate update rule. This has been described in Deshpande et. al. [6]

Figure 2.4: Neighbourhood stencil around a far-field boundary point [6]

Now for the second issue: Defect correction essentially employs perturbed Maxwellians, which,

as it turns out, could result in a non-Maxwellian distribution. Therefore, Deshpande et. al. [3]

formulate a strategy involving entropy variables or q-variables to cast the Euler equations in

symmetric hyperbolic form. The q-variables are uniquely mapped to the Maxwellian F , and

Chapter 2. Related Work 6

the conserved vector, U . Therefore, we can make perturbations in the q domain and uniquely

map them back to F and U . Since the q-variables have a logarithmic dependence on [ρ, u, β], it

can be shown that a linear combination of q-variables is mapped back to a valid Maxwellian

distribution. Hence, the defect correction procedure (which, now, involves a linear combination

of q-variables) can be successfully employed in the q domain whilst ensuring that the resultant

velocity distribution is still a Maxwellian.

Circling back to the issue of the lack of a theoretical proof for the conservation property of

LSKUM, one should note that this is because the least squares method decomposes the space

into connectivity sets that form an overlapping cover of the point cloud distribution. This

is in contrast to the finite volume method, where a triangulation of the space results in non-

overlapping mutually disjoint sets. In the latter case, it is easy to prove conservation by pairwise

cancellation of the fluxes at the common edges of the triangulated space. However, as has

been empirically shown, the LSKUM method accurately captures solutions yielding all flow

features prompting Deshpande and Ramesh et. al [6] to hypothesize that proven conservation is

a sufficient but not necessary condition for obtaining accurate R-H jump conditions across shocks.

This section was meant to give the reader an intuitive understanding of the q-LSKUM solver,

and its properties. The following chapter formalizes all of the discussion above, and lays down

the mathematics of the solver.

Chapter 3

Least Squares Kinetic Upwind

Meshfree Solver

3.1 The Kinetic Meshfree Method: q-LSKUM

3.1.1 Basic theory of LSKUM

The Least Squares Kinetic Upwind Method (LSKUM) belongs to the family of kinetic theory

based upwind schemes for the numerical solution of Euler or Navier-Stokes equations that govern

the compressible fluid flows. These schemes are based on the moment-method-strategy [10],

where an upwind scheme is first developed at the Boltzmann level and after taking suitable

moments, we arrive at an upwind scheme for the governing conservation laws. In this section,

we briefly present the basic theory of LSKUM for 2−D Euler equations that govern the inviscid

compressible fluid flows.

In the differential form, the Euler equations in two-dimensions are given by

∂U

∂t
+
∂G

∂x
+
∂H

∂y
= 0 (3.1)

Here, U is the conserved vector, G and H are the flux vectors along the coordinate directions x

and y respectively. These vectors are given by

U =


ρ

ρu1

ρu2

ρe

 ,G =


ρu1

p+ ρu2
1

ρu1u2

(p+ ρe)u1

 ,H =


ρu2

ρu1u2

p+ ρu2
2

(p+ ρe)u2

 (3.2)

7

Chapter 2. q-LSKUM 8

Here ρ is the mass density, u1 and u2 are the cartesian components of the fluid velocity along

the coordinate directions x and y respectively and p is the pressure. e is the specific total energy

per unit mass, given by

e =
p

ρ (γ − 1)
+

1

2

(
u2

1 + u2
2

)
(3.3)

where, γ is the ratio of specific heats. The conservation laws in eq. (3.1) can be obtained by

taking Ψ - moments of the 2−D Boltzmann equation in the Euler limit. In the inner product

form, this can be written as

∂U

∂t
+
∂G

∂x
+
∂H

∂y
=

〈
Ψ,

∂F

∂t
+ v1

∂F

∂x
+ v2

∂F

∂y

〉
= 0 (3.4)

Here, F is the Maxwellian velocity distribution function, given by

F =
ρ

I0

β

π
exp

[
−β
{

(v1 − u1)2 + (v2 − u2)2
}
− I

I0

]
(3.5)

where, v1 and v2 are the molecular velocities along the coordinate directions x and y respectively.

β = 1/ (2RT), R is the gas constant per unit mass, T is the absolute temperature, I is the

internal energy variable and I0 is the internal energy due to non-translational degrees of freedom.

The moment function vector Ψ is defined by Ψ =
[
1 v1 v2 I +

v21+v22
2

]T
. The inner product

〈Ψ, f〉 is defined by

〈Ψ, f〉 =

∫
R+×R2

Ψf (v) dvdI (3.6)

Using Courant-Issacson-Rees (CIR) splitting [2] of molecular velocities, an upwind scheme for

the Boltzmann equation in eq. (3.4) can be constructed as

∂F

∂t
+ v+

1

∂F

∂x
+ v−1

∂F

∂x
+ v+

2

∂F

∂y
+ v−2

∂F

∂y
= 0 (3.7)

where, v±1 and v±2 are defined as

v±1 =
v1 ± |v1|

2
, v±2 =

v2 ± |v2|
2

(3.8)

The basic idea of LSKUM is to obtain discrete approximations to the spatial derivatives using

least squares principle. We illustrate this approach to determine Fx and Fy at a point P0 using

the data at its neighbours. The set of neighbours, also known as the stencil of P0 is defined by

N (P0) = {Pi : d (P0, Pi) < ε} (3.9)

where d (Pi, P0) is the Euclidean distance between the points P0 and Pi. ε is the user defined

characteristic linear dimension of N (P0).

Chapter 2. q-LSKUM 9

Consider the Taylor series expansion of F up to linear terms at a neighbour point Pi around P0

∆Fi = ∆xiFx0 + ∆yiFy0 +O (∆x,∆y)2 , i = 1, . . . , n (3.10)

where ∆xi = xi − x0, ∆yi = yi − y0, ∆Fi = Fi − F0 and n represents the number of neighbours

of the point P0. For n ≥ 3, eq. (3.10) leads to an over-determined linear system, which can be

solved using the least squares principle. The first-order accurate least squares approximations to

the partial derivatives Fx and Fy at the point P0 are then given by

[
F 1
x

F 1
y

]
=

[∑
∆x2

i

∑
∆xi∆yi∑

∆xi∆yi
∑

∆y2
i

]−1 [∑
∆xi∆Fi∑
∆yi∆Fi

]
(3.11)

In the above formulae, the subscript 1 on Fx and Fy denotes first-order accuracy. Taking Ψ -

moments of eq. (3.7) along with the formulae in eq. (3.11), we obtain the semi-discrete form of

the first-order least squares kinetic upwind scheme for 2D Euler equations,

∂U

∂t
+
∂G+

∂x
+
∂G−

∂x
+
∂H+

∂y
+
∂H−

∂y
= 0 (3.12)

Here, G± and H± are respectively the kinetic split fluxes [4] along x and y directions. The least

squares formulae for the split flux derivatives G±
x and H±

y are given by

G±
x =

[∑
∆y2

i

∑
∆xi∆G

±
i −

∑
∆xi∆yi

∑
∆yi∆G

±
i∑

∆x2
i

∑
∆y2

i −
∑

∆xi∆yi

]
H±

y =

[∑
∆x2

i

∑
∆yi∆H

±
i −

∑
∆xi∆yi

∑
∆xi∆H

±
i∑

∆x2
i

∑
∆y2

i −
∑

∆xi∆yi

] (3.13)

Note that G±
x and H±

y are evaluated using the split stencils N±
x (P0) and N±

y (P0) respectively.

These subsets are defined by

N±
x (P0) = {Pi | Pi ∈ N (P0) ,∆xi = xi − x0 ≶ 0}

N±
y (P0) = {Pi | Pi ∈ N (P0) ,∆yi = yi − y0 ≶ 0}

(3.14)

Figure 3.1: Connectivity of node P0 in two dimensions. [6]

Chapter 2. q-LSKUM 10

3.1.2 Second-order accuracy using q-variables

One way of obtaining second-order accurate approximations to the spatial derivatives Fx and Fy

is by considering the Taylor series expansion of F up to quadratic terms

∆Fi =∆xiFx0 + ∆yiFy0 +
∆x2

i

2
Fxx0 + ∆xi∆yiFxy0

+
∆y2

i

2
Fyy0 +O (∆xi,∆yi)

3 , i = 1, . . . , n

(3.15)

For n ≥ 6, we get an over-determined linear system of the form

∆x1 · · · ∆y21
2

∆x2 · · · ∆y22
2

... · · ·
...

... · · ·
...

∆xn · · · ∆y2n
2





Fx0

Fy0
...
...

Fyy0


=



∆F1

∆F2

...

...

∆Fn


(3.16)

If we denote the coefficient matrix as A, the unknown vector as dF and the right hand side

vector as ∆F , then the solution of the linear system using least squares is given by

dF =
(
ATA

)−1 (
AT∆F

)
(3.17)

The first two elements of the vector dF give the desired approximations to Fx and Fy. It can be

observed that these formulae involve the inverse of a 5× 5 least squares matrix ATA. Central

to the success of this formulation is that this matrix should be well-conditioned. In the case

of first-order approximation, the 2× 2 least squares matrix corresponding to a point becomes

singular if and only if the points in its stencil lie on a straight line. On the other hand, the

least squares matrix in the second-order formulae can become singular if the alignment of the

stencil is such that at least two rows of the matrix ATA are linearly dependent. Furthermore, it

lacks robustness as the least squares matrix corresponding to the boundary points can be poorly

conditioned, which results in loss of accuracy.

Alternatively, second-order accuracy can be achieved by employing the defect correction method.

An advantage of this approach is that the dimension of the least squares matrix remains the

same as in the first-order scheme. To derive the desired formulae, we rearrange the eq. (3.15) as

∆Fi =∆xiFx0 + ∆yiFy0 +
∆xi

2
(∆xiFxx0 + ∆yiFxy0)

+
∆yi

2
(∆xiFxy0 + ∆yiFyy0)

+O (∆xi,∆yi)
3 , i = 1, . . . , n

(3.18)

Chapter 2. q-LSKUM 11

The basic idea of the defect correction procedure is to cancel the second-order derivative terms

in the above equation by defining a modified ∆Fi so that the leading terms in the truncation

errors for the formuale for Fx and Fy are of the order of O (∆xi,∆yi)
2. Towards this objective,

consider the Taylor series expansions of Fx and Fy up to linear terms

∆Fxi =∆xiFxx0 + ∆yiFxy0 +O (∆xi,∆yi)
2

∆Fyi =∆xiFxy0 + ∆yiFyy0 +O (∆xi,∆yi)
2

(3.19)

where ∆Fxi = Fxi −Fx0 and ∆Fyi = Fyi −Fy0 . Using these expressions in eq. (3.18), we obtain

∆Fi =∆xiFx0 + ∆yiFy0 +
1

2
∆xi∆Fxi +

1

2
∆yi∆Fyi

+O (∆xi,∆yi)
3 , i = 1, . . . , n

(3.20)

We now introduce the modified perturbation in Maxwellians, ∆F̃i and define it as

∆F̃i =∆Fi −
1

2
∆xi∆Fxi −

1

2
∆yi∆Fyi

=∆Fi −
1

2
∆xi (Fxi − Fx0)− 1

2
∆yi (Fyi − Fy0)

(3.21)

Using ∆F̃i, eq. (3.20) reduces to

∆F̃i = ∆xiFx0 + ∆yiFy0 +O (∆xi,∆yi)
3 , i = 1, . . . , n (3.22)

Solving the modified over-determined system using least squares, the second-order accurate

approximations to Fx and Fy at the point P0 are given by

[
F 2
x

F 2
y

]
=

[∑
∆x2

i

∑
∆xi∆yi∑

∆xi∆yi
∑

∆y2
i

]−1 [∑
∆xi∆F̃i∑
∆yi∆F̃i

]
(3.23)

Note that the subscript 2 on Fx and Fy denotes second-order accuracy. The above formulae

satisfy the test of k-exactness as they yield exact derivatives for polynomials of degree ≤ 2.

Furthermore, these formulae have the same structure as the first-order formulae in eq. (3.11),

except that the second-order approximations use modified Maxwellians. In contrast to first-order

formulae that are explicit in nature, the second-order approximations have implicit dependence

as the evaluation of Fx and Fy at the point P0 requires the values of Fx and Fy at P0 and its

neighbours apriori, so that ∆F̃i in eq. (3.21) can be estimated.

Taking Ψ - moments of the spatial terms in eq. (3.7) along with the formulae in eq. (3.23), we

Chapter 2. q-LSKUM 12

get the second-order accurate discrete approximations for the kinetic split flux derivatives as

∂G±

∂x
=

∑
∆y2

i

∑
∆xi∆G̃

±
i −

∑
∆xi∆yi

∑
∆yi∆G̃

±
i∑

∆x2
i

∑
∆y2

i −
∑

∆xi∆yi

∂H±

∂y
=

∑
∆x2

i

∑
∆yi∆H̃

±
i −

∑
∆xi∆yi

∑
∆xi∆H̃

±
i∑

∆x2
i

∑
∆y2

i −
∑

∆xi∆yi

(3.24)

where, ∆G̃
±
i and ∆H̃

±
i are defined by

∆G̃
±
i =∆G±

i −
1

2

{
∆xi

∂

∂x
∆G±

i + ∆yi
∂

∂y
∆G±

i

}
∆H̃

±
i =∆H±

i −
1

2

{
∆xi

∂

∂x
∆H±

i + ∆yi
∂

∂y
∆H±

i

} (3.25)

A drawback of this formulation is that the second-order scheme thus obtained reduces to first-

order at the boundaries as the stencils to compute the split flux derivatives may not have enough

neighbours. Furthermore, ∆F̃i is not the difference between two Maxwellians. Instead, it is the

difference between two perturbed Maxwellians, given by

∆F̃i = F̃i − F̃0 =

{
Fi −

1

2
(∆xiFxi + ∆yiFyi)

}
−
{
F0 −

1

2
(∆xiFx0 + ∆yiFy0)

} (3.26)

Unlike Fi and F0, the distribution functions F̃i and F̃0 may not be non-negative and therefore

need not be Maxwellians.

In order to preserve positivity, instead of Maxwellians, we employ the q-variables [3, 5] in

the defect correction procedure to obtain second-order accuracy. In terms of the primitive

variables (ρ, u1, u2, β), the q-variables in two-dimensions are defined by

q =

[
ln ρ+

lnβ

γ − 1
− β

(
u2

1 + u2
2

)
, 2βu1, 2βu2, −2β

]T
(3.27)

Note that the transformations F ←→ q and U ←→ q are unique and therefore the q-variables

can be used to represent the fluid flow at the macroscopic level. The second-order LSKUM based

on q-variables is then obtained by replacing ∆G̃
±
i and ∆H̃

±
i in eq. (3.25) with ∆G±

i (q̃) and

∆H±
i (q̃) respectively. The new perturbations in split fluxes are defined by

∆G±
i (q̃) =G± (q̃i)−G± (q̃0)

∆H±
i (q̃) =H± (q̃i)−H± (q̃0)

(3.28)

Chapter 2. q-LSKUM 13

Here, q̃i and q̃0 are the modified q-variables, given by

q̃i = qi −
1

2

(
∆xiqxi + ∆yiqyi

)
q̃0 = q0 −

1

2

(
∆xiqx0 + ∆yiqy0

) (3.29)

The necessary condition for obtaining second-order accurate split flux derivatives is that qx

and qy in eq. (3.29) are evaluated with second-order accuracy. Note that these components

are approximated using full stencil in a way similar to that of Fx and Fy in eq. (3.23). The

resulting least squares formulae for q2x and q2y are implicit in nature and need to be solved itera-

tively. These sub-iterations are called inner iterations. Once evaluated, the q̃-variables are used

to compute ∆G± (q̃) and ∆H± (q̃) at the first step and then the split flux derivatives in eq. (3.24).

It is well-known that the second-order schemes use limiters to prevent the generation of spurious

oscillations and to preserve monotonicity of the solution in regions with large gradients. In the

current scheme, monotonicity at any point P0 is enforced by introducing a slope limiter φ0 for

q̃0 such that the condition

qmin ≤ q0 −
φ0

2

(
∆xiqx0 + ∆yiqy0

)
≤ qmax (3.30)

holds for all points in the neighbourhood of P0. Here, qmin and qmax are defined by

qmin = min {qi, i ∈ N (P0)}

qmax = max {qi, i ∈ N (P0)}
(3.31)

An advantage of this approach is that higher-order accuracy can be achieved even at boundary

points as q-variables can be combined with the kinetic wall [10] and outer boundary [12] condi-

tions. Furthermore, the distribution functions F (q̃i) and F (q̃0) corresponding to q̃i and q̃0 are

always Maxwellians and therefore preserves the positivity of numerical solution.

Finally, the state-update formula for steady problems can be constructed by replacing the

pseudo-time derivative in eq. (3.12) with a suitable discrete approximation and local time step-

ping. In the present work, the solution is updated using a four-stage Runge-Kutta (SSP-RK3)

[9] time marching algorithm.

Chapter 4

GPU Accelerated Meshfree Solver in

C++

In this chapter, we elaborate on the specifics of the implementation of the meshfree solver in

C++. First, we describe the structure of the serial solver, the objects and functions involved.

This is followed by an introduction to the CUDA framework in then next chapter, alongside

details of the implementation of the parallel solver.

Aerodynamic shape optimization problems involving the numerical scheme discussed in the

previous chapter require thousand of iterations. Hence, time is a very valuable commodity in

these applications. Hence, time is a very valuable commodity in these applications. As a result,

Fortran and C++ are the natural choices of programming languages for these scientific computing

applications. C++ offers efficiency, flexible expression templates, is richly supported and is

also amenable for parallelism using CUDA C++. Moreover, C++ has support for automatic

differentiation through libraries such as CoDiPack, which is based on the operator overloading

method. For these reasons, we decided to develop a C++ version of the q-LSKUM solver.

Before we get started with the specifics, it is important to note that:

• Our primary objective is to develop a meshfree solver that is time-efficient. We benchmark

it against the Fortran version; Speed is our first criterion.

• We validate the numerical solution’s accuracy to the order of 13 digits beyond the decimal.

Crucially this means that most of our variables need to be have double precision, and that

the residue values should match with the Fortran version upto the 13th decimal place.

14

Chapter 3. q-LSKUM solver in C++ 15

4.1 Data Structures

Essentially the solver makes use of two major data structures:

• A Point Struct that stores the spatial co-ordinates, the connectivity (neighbours), prim

values, flux residual values, the q variable and its derivative values, the delta value and

flags to indicate the point type (wall, interior, or boundary).

• And, a global array of the above Point Structs, named globaldata that is passed to each of

the five major functions.

Figure 4.1: Definition of the Point Struct

Chapter 3. q-LSKUM solver in C++ 16

4.2 Codeflow, Functions and Sub-functions

The first step involves reading the input grid points generated by a Quadtree based point

generation method, from a file onto the globaldata array of Point structs.

We pass the globaldata pointer as an argument into the subsequent functions, and perform

in-place mutations. At the heart of the solver, is a fixed-point-iterative method that runs for a

number of iterations (typically in the thousands), with each iteration seeking to reduce the value

of the residues. The residual value is computed and displayed at the end of the state_update

function in each iteration. The lower the residue values, the better is the numerical solution

obtained.

Each iteration calls the following functions in the listed order: (1) func_delta, which computes

and sets delta for each point in globaldata.

double delta_t = dist/(mod_u + 3*sqrt(globaldata[conn].prim [3]/ globaldata[conn].prim [0]));

delta_t *= cfl;

where conn parses through the connectivity of the current point, looking at each of its neighbors.

Following this, the functions

(2) q_variables,

(3) q_var_derivatives,

(4) q_var_derivatives_innerloop,

(5) cal_flux_residual, and

(6) state_update

are called rks number of times where rks = 4 for a 4-stage Runge-Kutta (SSP-RK3) time

marching algorithm.

The subroutine q_variables evaluates the q-variables outlined in the previous chapter, while

q_derivatives and q_derivatives_innerloop compute the second order accurate approxima-

tions of qx and qy along with inner iterations. This is followed by the calculation of the flux

residuals through the least squares approximation of the split fluxes, mentioned in the q-LSKUM

algorithm detailed in the previous chapter. This cal_flux_residual function is the most time

consuming function (takes about 80% of the wall clock time) of the solver, hence identified as

the primary bottleneck. Finally, the state_update function updates the flow solution at each

Runge-Kutta step. 1

1Link to the accompanying code: Meshfree-cpp-github

Chapter 3. q-LSKUM solver in C++ 17

Algorithm 1: Serial meshfree solver based on q-LSKUM

function q-LSKUM

call preprocessor()

for n← 1 to n ≤ N do

call timestep()

for rk ← 1 to rks do

call q variables()

call q var derivatives()

call q var derivatives innerloop()

call cal flux residual()

call state update(rk)

end

end

call postprocessor()

end function

To recap,

• A Quadtree based point refinement algorithm is used for generating the input point cloud

distribution. Specifics of the quadtree algorithm is relegated to the appendix. In short, the

quadtree data structure represents a hierarchical decomposition of the 2-D space. Each point,

and its properties are stored in a quadtree node. Each node has four children corresponding to

the four directions: North (N), West(W), South (S) and East (E). The algorithm seeks to refine

the point distribution based on the notion of a Mahalanobis distance between the Maxwellians;

The following refined tree is balanced, and smoothed, and the process is repeated.

The input format is as follows: (point index, X, Y, left index, right index, flag 1, flag 2, neigh-

bours, connectivity).

• The input point distributions take up increasingly large amounts of memory on the sec-

ondary storage as they become finer, and finer. It is an encouraged practice to use the HDF5

file format for efficient file-reads and file-writes. Therefore, we have used the HDF5 format to

store the Quadtree generated grids.

• Upon completion of input file-read, the first line of business is to compute and set the normals

through placeNormals. This is followed by connectivity generation in calculateConnectivity.

Together this ends the input file pre-processing. We are now ready to enter fpi_solver.

• fpi_solver is run for the specified number of iterations. First, timestep computes and

Chapter 3. q-LSKUM solver in C++ 18

updates the timestep for each point in globaldata. This is followed by the computation of

q_variables; the derivatives of q-variables in q_var_derivatives; and finally, the inner it-

erations necessary for second order accuracy in q_var_derivatives_innerloop. All of these

functions are relatively inexpensive compared to the next.

• The major bottleneck in the q-LSKUM solver code is the cal_flux_residual function.

This function performs spatial discretization, and LS approximation of the fluxes as explained

in the previous chapter. The upwind scheme following the kinetic flux vector split, and the

state updates are performed in the state_update function. First, the perturbed q-variables

(or) q̃-variables are mapped to the primitive variables through qtilde_to_primitive, and then

the upwind scheme is completed with primitive_to_conserved. state_update performs the

Runge-Kutta time stepping.

• We now have a scientific software framework. How do we optimize it from a software

perspective? How do we squeeze every last bit of efficiency out of it?

• Observation #1: cal_flux_residual is our major bottleneck.

• Observation #2: All the computations happen over a huge number of points (ranging from

thousands to millions to billions). And, the computations corresponding to each point in each of

the six major functions are Independent of each other!

• Observation #3: GPUs are great at performing compute intensive operations but not so good

at context switching. And, our application does not require much context switching in its present

form. Hence, GPUs are ideal for accelerating our code.

Chapter 3. q-LSKUM solver in C++ 19

“ Premature optimization is the root of all evil ” - Donald Knuth

Chapter 5

GPU Acceleration with CUDA

In this chapter, we give a brief introduction to the CUDA framework, the prospects of paralleliza-

tion that it offers and the implementation of the CUDA parallel version of the Meshfree solver.

Without getting too much into the architectural and hardware details, we review concepts from

the perspective of a programmer looking to speed up computations by making use of the data

parallelism that our algorithm lends itself to. For further details the reader may refer [11], which

is an excellent reference for CUDA C++.

5.1 The CUDA Programming Model

Traditionally, programmers have sought MPI based task parallelism for speeding up their applica-

tions on the CPUs. The Scientific Computing literature is rich with such parallel implementations,

which have been existent for decades. In recent years, there is a growing trend of programmers

moving parallelizing their applications on Graphical Processing Units (GPUs).

The GPUs have brought about a paradigm shift in parallel programming, by offering much higher

instruction throughput and memory bandwidth. They aren’t nearly as good as the CPU for

context-switching and logic involving the use of extensive control flows; Rather they have been

architected with a fundamentally different goal in mind - one that enables them to efficiently

perform data intensive computations. The CUDA framework is a middlework that abstracts

out the hardware details and provides a convenient extension of the high-level language as an

interface for the programmer to work with.

Naturally we sought to speed up our meshfree solver by parallelizing it on the GPU. And

the result was an immediate and tangible speedup of 15x on the coarsest grid (40K points), and

23x on the finest one (2.5 M points).

20

Chapter 3. q-LSKUM solver in C++ 21

The following diagram illustrates the distribution of transistors on a GPU chip as compared to

that in a GPU chip. Designed for highly parallel operations, the GPU chip has a much higher

number of transistors devoted to data processing rather than flow control and data caching.

Figure 5.1: Distribution of transistors on the NVIDIA GPU vs. the CPU [11]

The CUDA programming model is quite simple, and convenient. At the core are three main

abstractions - a hierarchy of thread groups, shared memories, and barrier synchronization. [11]

The execution model follows SIMT (Single Instruction Multiple Threads), much similar to SIMD

(Single Instruction Mutiple Data). Essentially, multiple threads execute the same instruction

on the streaming processor. Threads are grouped together into blocks; and blocks are grouped

together into grids. Threads, Blocks and Grids are uniquely identified by their respective IDs,

exposed to the user through an API call.

Each GPU device contains a number of CUDA cores or stream processors. These are packed

within a Streaming Multiprocessor (SM). A set of threads, called a warp is scheduled on the

SM by a warp scheduler. SMs can concurrently execute one or more warps. It should be noted

that although the thread is the lowest unit of the hierarchy, the execution model executes one

warp at a time (which entails concurrent execution of a set of threads, 32 to be precise). This is

done as per the SIMT model, and to maximize SM utilization one should try to minimize thread

divergence within a warp. Divergence occurs when different threads try to execute different

statements (for instance, one thread may have evaluated the boolean expression in a conditional

branch to false whereas the expression might have evaluated to true in another thread). Unlike

a CPU, no branch prediction occurs in a GPU. Rather, threads execute NOP (No-operation)

whenever a thread divergence occurs leading to lower SM utilization. It should be noted that

computational resources for all the threads of a block are to be allocated on the same stream

processor. Therefore, there are physical constraints on the number of threads assigned to a block.

Chapter 3. q-LSKUM solver in C++ 22

In current NVIDIA GPUs, the limit is 1024 threads per block.

Interthread communication is possible through the use of shared memory. This memory is shared

among all the threads in a block. The NVIDIA GPU has the following types of memory blocks:

Global memory that is accessible globally within a device, but which has the highest latency;

Constant memory, again globally accessible and latency same as that of global memory; Local

memory available per thread level; Thread-level registers are the least in size and provide lowest

latency; Finally, shared memory is accessible at the block level. The latency, in increasing order

is as follows: Shared < Local < Global. Lesser the latency, greater is the throughput. One

should, therefore, try to maximize the use of shared memory.

Figure 5.2: Memory Hierarchy [11]

Recently, Unified Memory was made available - which allows the memory locations to be accessed

by both the device and the host. Prior to this, device functions or kernels couldn’t access host

or CPU memory, and vice versa. Host memory had to be explicitly offloaded to the device, and

copied back after performing the necessary computations. These MemCpy calls are synchronous

Chapter 3. q-LSKUM solver in C++ 23

in nature, by default and are often expensive. Therefore, care must be taken to keep such

memory transfers to a minimum lest the communication overhead dominate the speedup gained

in computation.

SideNote: As with any parallel programming paradigm, conscious effort must be taken to

ensure that race conditions don’t occur, that the threads are synchronized appropriately, and

that atomic operations suitably to prevent such thread race conditions. The issue with these

logical errors is that they don’t fail spectacularly; they fail silently and dormant errors are

hard to debug.

Functions not preceded by any specifier are treated de-facto as __host__ functions by the

nvcc compiler, and can be executed only on the CPU. Using the __global__ specifier before a

function allows for execution by both the CPU and the GPU; And, the __device__ informs the

compiler that the function is to be called only on the GPU. These __device__ or __global__

functions, in a CUDA Aware environment, when called with a number of threads, require the

invocation to specify block and grid dimension in the form of a triple chevron syntax. The

following diagram illustrates a basic parallel Matrix Addition example:

Figure 5.3: Example Matrix Addition Kernel [11]

5.2 Parallel Meshfree Solver

5.2.1 The design of the parallel solver in a nutshell

The q-LSKUM meshfree solver perfectly presents itself for data parallelism. We break down all

the loops that run from 1→ N; Individual threads perform the computations associated with

each of the N grid points. The mapping is as follows: idx = threadIdx.x + blockSize ×

Chapter 3. q-LSKUM solver in C++ 24

blockIdx.x. We make optimal use of Shared Memory and Block Reductions. The optimizations

performed and the improved performance of the solver with the addition of each of these

optimizations is detailed in the next chapter.

5.2.2 Implementation Specifics of the Parallel Solver

Once we understand the CUDA programming model, it becomes easy to conceive of the GPU

parallel q-LSKUM solver. The first design decision is regarding whether we want to parallelize

the entire solver, or just the bottleneck function cal_flux_residual. We decide to parallelize

the entire solver keeping in mind that the speedup gained due to parallelism will be evident for

other functions as well as we move on to much finer grids. Moreover, as a natural extension of

the current work for solving aerodynamic shape optimization problems, we shall be implementing

the adjoint meshfree solver as well. This would be implemented with the help of the operator

overloading based automatic differentiation package, CoDiPack. CoDiPack maintains a register

tape of the operations and variable values from the forward pass, which it uses to perform the

backward pass in a constant factor times the time taken to perform the primal calculations.

Support for this taping process has not been extended to automatically traverse both the CPU

and the GPU within a single program evaluation. Hence, it makes sense to port over the entire

solver to the GPU.

We parallelize each of the functions detailed in the previous section, starting from func_delta

right upto state_update converting them to GPU kernels. cudaMemcpy and cudaDevice-

synchronize calls are heavy, and impose significant communication overhead. Hence, the major

storage data structure globaldata is pushed to the GPU before the iterations of the fpi_solver

begin, and copied back to the CPU at the very end.

Now for the modifications inside each function: The first change, to port over the solver

to CUDA C++ is to break up the for loops in each of the kernels and assign a thread for the

corresponding computations. Since globaldata is a single dimensional array of structs, and

since most of the array structures we use are 1-D, we use the following mapping between array

index and thread index: idx = threadIdx.x + blockSize × blockIdx.x. A if conditional

checks and ensure no array access out-of-bounds is made.

Since the solver calls the kernels in succession, and since CUDA launches the kernels within

a single stream one after another, there is no need for additional syncing calls in-between the

kernels. We, however, need a cudaDeviceSynchronize call at the end of each state update,

before the computation of the sig_res_sqr values (sum of squared residues). This standalone

summation is performed following the state_update as shown:

Chapter 4. CUDA parallel q-LSKUM solver 25

double sig_res_sqr = thrust::reduce(thrust::cuda::par.on(stream), res_sqr_d,

res_sqr_d + numPoints, (double) 0.0, thrust::plus<double>());

While implementing the parallel solver, we make sure that thread divergence is reduced by

minimizing the use of conditional branches. We make use of two CUDA concepts: Shared

Memory and Block Reductions as subsequent optimizations. As explained in the previous section,

shared memory offers fast memory accesses due to lower latency. We therefore, store G_xp, G_xn,

G_yp, G_yn, result, and other variables in cal_flux_residual_cuda in the shared memory. In

practice, shared memory did offer a tangible improvement in performance, as expected. Block

reductions are used to optimize for block commutative operations over the GPU. It should be

noted that block reductions, while time-efficient (O(logN) time for addition of a ‘N’ element

array) are not cost-efficient(O(NlogN) cost). We go ahead and implement block reductions

because time-efficiency is our concern, and we do not optimize for cost efficiency.

In the GPU version, we strip the globaldata array of structs into individual, separate ar-

rays of ‘N’ elements each. This is done to ensure better memory alignment, and avoid dead

memory due to padding. This leads to an increase in performance through better memory accesses.

Following this, we implemented CUDA Graphs to batch up the kernel calls. Normally the

kernels are visible to the nvcc compiler only when it comes into scope, and the compiler is not

cognizant of all the kernel invocations to be made up front. Batching up the kernel invocations,

and providing it as a graph allows CUDA to perform smart compiler optimizations. However,

for our use-case implementing CUDA graphs yielded no significant improvement in performance.

In the next chapter, we detail the extensive experiments and benchmarks against Fortran.

We see that the C++ solver performs comparably well with Fortran.

Chapter 6

Results and Discussion

In this chapter, we present a comparative analysis with Fortran, and show that the C++ solver

performs comparably well. Hence, the q-LSKUM meshfree solver has been successfully ported

over to C++ from Fortran, with scope for future optimizations. We use the RDP as a cost

metric, to compare the performance of the solvers. The lower the RDP value, the better is the

performance.

Rate of Data Processing (RDP): Defined as the time taken, in seconds by the program to

perform the computations divided by (the number of iterations × the number of grid points) i.e.,

time taken for the execution of the solver per grid point per iteration.

All experiments were performed on a linux workstation and NVIDIA M5000 GPU with configu-

ration details as given below:

CPU GPU

Model Intel Xeon E5-2698 v4 Nvidia Quadro M5000

Cores 40 (20 × 2) 2048

Core Frequency 2.20 GHz 1.038 GHz

Global Memory 128 GB 8 GB

L2 Cache 5 MB 2 MB

C++ Fortran

Compiler GCC PGI

Compiler Version 9.3.0 18.10

Compiler Flags O3 O3 -Mcuda = rdc

NVIDIA Version 450.51.06 450.51.06

CUDA Version 11.0 11.0

26

Chapter 5. Experiments and Results 27

6.1 Performance Analysis of the Meshfree Solvers: C++ and

Fortran

6.1.1 Serial version

Performance of the C++ and Fortran serial codes on different grids (The 40K grid is the

coarsest). RDP values and wall-clock execution times are reported for a single core CPU

computation.

Number of Number of C++ Fortran C++ Fortran
Points Iterations (secs) (secs) RDP RDP

48738 1000 1297.38 1453.96 2.6619E-05 2.9832E-05
192632 1000 5239.76 4938.51 2.7201E-05 2.5637E-05
345140 1000 9235.87 7809.73 2.6760E-05 2.2628E-05
804824 1000 21047.58 15325.27 2.6152E-05 1.9042E-05
2642264 100 6874.75 4650.15 2.6018E-05 1.7599E-05

Table 6.1: RDP values and wall-clock times for single core CPU computation.

6.1.2 GPU version

We perform several ablation experiments to show the effect of each GPU optimization. First

we implement the GPU parallel version of the C++ solver sans block reductions and shared

memory. Then we show the performance improvement due to the usage of block reductions and

shared memory. Finally we optimize for padding and alignment on the GPU by splitting the

globaldata array of structs into individual arrays thereby reducing the latency for memory

accesses by effectively reducing the amount of dead memory. An important hyperparameter

in these experiments is the number of threads per block (threads_per_block). We set

threads_per_block to 32, 64, 128, and 256 and choose the optimal value. For the C++ version

the optimal threads_per_block is found to be 32, whereas for Fortran, it is seen to be 64. The

values reported below are for the optimal number of threads per block.

Note that throughout these comparisons, we make use of the most optimal configuration for For-

tran with regards to threads_per_block, block reductions, shared memory and padding/align-

ment optimizations. The ablation experiments are performed on the C++ version alone. We

find that the C++ version making use of shared memory v1, block reductions, with the stripped

point struct, and threads_per_block set to 32 shows the best performance. In shared memory

v1, the arrays Gxp, Gxn, Gyp, Gyn, result, sig_del_x_del_f, sig_del_y_del_f, qtilde_i,

Chapter 5. Experiments and Results 28

qtilde_k are allocated in the shared memory space; In shared memory v2, we further allocate

phi_i, phi_k, G_i, and G_k on the shared memory space. The former version is seen to be faster

than the latter version, which is an interesting result. All comparions are made against

the most optimal configuration of the Fortran GPU code.

Number of Number of C++ Fortran C++ Fortran
Points Iterations (secs) (secs) RDP RDP

48738 1000 106.38 76.55 2.1827E-06 1.5706E-06
192632 1000 386.66 260.15 2.0073E-06 1.3505E-06
345140 1000 640.17 437.88 1.8548E-06 1.2687E-06
804824 1000 1473.44 934.16 1.8308E-06 1.1607E-06
2642264 1000 4815.58 2900.62 1.8225E-06 1.0978E-06

Table 6.2: C++ version without block reductions and shared memory.

Number of Number of C++ Fortran C++ Fortran
Points Iterations (secs) (secs) RDP RDP

48738 1000 80.82 76.55 1.6584E-06 1.5706E-06
192632 1000 282.86 260.15 1.4684E-06 1.3505E-06
345140 1000 480.13 437.88 1.3911E-06 1.2687E-06
804824 1000 1101.72 934.16 1.3689E-06 1.1607E-06
2642264 1000 3604.23 2900.62 1.3641E-06 1.0978E-06

Table 6.3: C++ version with block reductions and shared memory, v1.

Number of Number of C++ Fortran C++ Fortran
Points Iterations (secs) (secs) RDP RDP

48738 1000 88.54 76.55 1.8167E-06 1.5706E-06
192632 1000 305.70 260.15 1.5870E-06 1.3505E-06
345140 1000 504.95 437.88 1.4630E-06 1.2687E-06
804824 1000 1121.21 934.16 1.3931E-06 1.1607E-06
2642264 1000 3628.38 2900.62 1.3732E-06 1.0978E-06

Table 6.4: C++ version with block reductions and shared memory, v2.

It is to be noted that we implemented CUDA Graphs for the C++ version, to batch up the

kernel invocations but that yielded no consistently noticeable improvement. Clearly the C++

version demonstrates comparable performance to the Fortran version as seen from both the

wall-clock times as well as the RDP values. For the coarser grids, in fact, the performance of the

C++ version is seen to be better than the Fortran version. However, the RDP values of Fortran

for the 800K grid as well as the 2.5M grid are marginally higher than the C++ version. We

Chapter 5. Experiments and Results 29

Number of Number of C++ Fortran C++ Fortran
Points Iterations (secs) (secs) RDP RDP

48738 1000 74.41 76.55 1.5268E-06 1.5706E-06
192632 1000 257.09 260.15 1.3346E-06 1.3505E-06
345140 1000 431.09 437.88 1.2490E-06 1.2687E-06
804824 1000 945.10 934.16 1.1743E-06 1.1607E-06
2642264 1000 2993.56 2900.62 1.1330E-06 1.0978E-06

Table 6.5: C++ version with stripped point struct, block reductions
and shared memory, v1.

hypothesize that this is due to the difference in the type and kind of optimizations performed by

the GCC compiler as opposed to those performed by the PGI compiler. The grid sizes in typical

CFD applications are expected to be quite large; hence we intend to further optimize the C++

implementation by vectorizing the operations. It can be seen that the GPU parallelization of

the C++ code offers a speedup of upto 23x.

Furthermore, it is observed that as the point distributions become finer, the relative speedup

achieved by the C++ solver is higher as compared to that of the Fortran solver. However,

one should note that the RDP value of the GPU accelerated Fortran solver for these point

distibutions is lesser than that of the C++ solver indicating that the Fortran solver is more

efficient. The higher relative speedup achieved, therefore, is a result of the performance of the

corresponding serial counterparts. In other words, the serial version of the C++ solver, on finer

point distributions, is seen to have a higher RDP value than that of the Fortran solver, and

therefore the speedup achieved by the GPU parallel C++ solver is seen to be higher.

Chapter 5. Experiments and Results 30

6.1.3 Kernel Performance Analysis Tables

• Performance metrics of the flux_residual kernel for optimal number of threads_per_block.

Code SM Memory Achieved Theoretical

Utilisation Utilisation Occupancy Occupancy

of points = 48738

C++ 70.97% 42.80% 15.03% 15.62%

Fortran 72.12% 19.17% 10.57% 12.5%

of points = 192632

C++ 96.90% 69.40% 48.83% 50%

Fortran 86.49% 21.49% 11.77% 12.5%

of points = 345140

C++ 98.08% 71.24% 49.33% 50%

Fortran 90.49% 25.37% 12.28% 12.5%

of points = 804824

C++ 98.85% 73.38% 49.60% 50%

Fortran 72.12% 19.17% 10.57% 12.5%

of points = 2642264

C++ 99.67% 75.17% 49.81% 50%

Fortran 72.12% 19.17% 10.57% 12.5%

• Performance metrics of the flux_residual kernel on the finest point distribution, with varying

number of threads_per_block.

Code SM Memory Achieved Theoretical

Utilisation Utilisation Occupancy Occupancy

of threads_per_block= 32

C++ 96.90% 69.40% 48.83% 50%

Fortran 86.49% 21.49% 11.77% 12.5%

of threads_per_block = 64

C++ 98.08% 71.24% 49.33% 50%

Fortran 90.49% 25.37% 12.28% 12.5%

of threads_per_block = 128

C++ 98.85% 73.38% 49.60% 50%

Fortran 72.12% 19.17% 10.57% 12.5%

Chapter 5. Experiments and Results 31

• Relative run-time of the kernels across the point distributions, for the optimal number of

threads_per_block (32 for C++, and 64 for Fortran).

Code q variables q derivatives q der innerloop flux res

of points = 48738

C++ 70.97% 42.80% 15.03% 15.62%

Fortran 72.12% 19.17% 10.57% 12.5%

of points = 192632

C++ 96.90% 69.40% 48.83% 50%

Fortran 86.49% 21.49% 11.77% 12.5%

of points = 345140

C++ 98.08% 71.24% 49.33% 50%

Fortran 90.49% 25.37% 12.28% 12.5%

of points = 804824

C++ 98.85% 73.38% 49.60% 50%

Fortran 72.12% 19.17% 10.57% 12.5%

of points = 2642264

C++ 99.67% 75.17% 49.81% 50%

Fortran 72.12% 19.17% 10.57% 12.5%

Chapter 5. Experiments and Results 32

Figure 6.1: Relative speedup of the C++ code.

Figure 6.2: Relative speedup of the Fortran code.

Chapter 5. Experiments and Results 33

Figure 6.3: RDP Comparison across grids, with optimal number of threads per block.

Figure 6.4: C++ RDP variation with threads per block.

Chapter 7

Concluding Remarks and Future

Work

This thesis develops and implements a Least Squares Kinetic Upwind Method (q-LSKUM) based

meshfree solver in C++, for modelling aerodynamic flows around complex configurations. Both

the serial as well as the GPU parallel versions of the solver are implemented. Numerical results on

five levels of point distribution are shown, and it is seen that the GPU codes achieved impressive

speedups as compared to their corresponding serial codes. We present numerous kernel metrics,

and show that a speedup of upto 23x is achieved through GPU parallelization of the solver. The

solver is extensively benchmarked against the Fortran version, and performs comparably well

demonstrating the efficacy of the solver. On coarser distributions, the GPU accelerated C++

solver is seen to have a lower RDP value than the equivalent Fortran solver. However, on finer

distributions the Fortran solver is seen to have lower RDP values. While the q-LSKUM algo-

rithm implemented has been proven to effectively handle large unstructured grids, and has seen

increasing adoption notably in the Indian Aerospace programs, certain algorithmic enhancements

remain open such as improving the condition number of the least squares matrices, and op-

timal selection of weights for better spectral resolution - all valuable directions for future research.

Further investigations are underway to increase the computational efficiency of the GPU solver

based on C++. In future, we want to extend the code to three dimensional flows, and accelerate

it on multiple GPUs.

34

Appendix A

Input File Format; Pseudocode;

Terms and Definitions

A.1 Input Point Distribution

A.1.1 HDF5

The input grids are stored as HDF5 files to facilitate efficient reads and writes. This is essential

especially as the grids become finer: HDF5 offers reduced file operation times for these large input

files. The HDF5 is a hierarchical data file format that support large and complex heterogenous

data. It makes use of a directory-like structure to store the data. The data is hierarchically

partitioned into datasets, groups and attributes. Table objects are indexed using B-trees.

In our implementation we make use of h5cpp, an open source library that abstracts away

many of the HDF5 function calls in a parsimonious manner, and exposes the functionality in a

programmer friendly manner.

A.1.2 Quadtree point refinement algorithm

The input grids have been refined, and generated using a Quadtree based point refinement

algorithm. A quadtree is a data structure that can be used to efficiently store, and operate on

spatial data. It performs a hierarchical decomposition of the 2-D input space. Each internal node

of the quadtree contains four children: North (N), South (S), East (E) and West (W). A quadtree

is said to be balanced if the difference in depth or level between any pair of neighbouring nodes

is atmost one. The level of a node is computed as the level of the parent plus one. The root

node is taken to be at level 0. All the information necessary for the q-LSKUM computations is

35

Appendix A. 36

stored in the leaf nodes.

The quadtree is first built through a recursive decomposition of the initial input grid space,

and stores the initial input point distribution. This is further refined, and the refined point

distribution is taken as the input for the q-LSKUM solver. The refinement process consists

of three steps: First, we identify certain quadrants or the corresponding points for refinement.

These quadrants are split into four disjoint sub-quadrants. The centroids of these sub-quadrants

represent the spatial co-ordinates of the newly spawned children. Second, the resultant quadtree

is balanced. And third, the refined quadtree is smoothed.

To identify the points for refinement, we use employ a metric based on the Mahalanobis

Distance between the Maxwellian distributions of the velocities for each pair of points. In

practise, we impose a limit on the minimum size of the quadrant. Post refinement, points inside

the wall boundary are culled. It should be noted that the meshfree solver is capable of operating

on unstructured point distributions coming from any such generation algorithm be it quadtree

based refinement or the advancing front method to name a couple.

A.2 Algorithm Pseudocode

Algorithm 2: q-LSKUM Meshfree Solver

function q-LSKUM

call readQuadtreeInput()

call calculateConnectivity()

for n← 1 to n ≤ N do

call func delta()

for rk ← 1 to rks do

call q variables()

call q var derivatives()

call q var derivatives innerloop()

call calc flux residual()

call state update()

end

end

end function

Appendix A. 37

Algorithm 3: q var derivatives innerloop

function q var derivatives innerloop

for n← 1 to n ≤ N do

Compute Σ∆x2

Compute Σ∆y2

Compute Σ∆x∆y

for i← 1 to num(nbhs) do

call q var derivatives get sum delq innerloop()

call update temp dq()

end

end

for n← 1 to n ≤ N do

call q var derivatives update innerloop()

end

end function

Algorithm 4: calc flux residual

function calc flux residual

Initialize Gxp[4], Gyp[4], Gxn[4], Gyn[4] ← 0

for n← 1 to n ≤ N do

call wallindices flux residual()

call outerindices flux residual()

call interiorindices flux residual()

end

end function

Algorithm 5: wallindices flux residual

function wallindices flux residual

call wall dGx pos()

call wall dGx neg()

call wall dGy neg()

Update Globaldata.flux res

end function

Appendix A. 38

Algorithm 6: outerindices flux residual

function outerindices flux residual

call outer dGx pos()

call outer dGx neg()

call outer dGy pos()

Update Globaldata.flux res

end function

Algorithm 7: innerindices flux residual

function innerindices flux residual

call inner dGx pos()

call inner dGx neg()

call inner dGy pos()

call inner dGy neg()

Update Globaldata.flux res

end function

Algorithm 8: wall dGx pos

function wall dGx pos

Initialize phi, G, qtilde, Σ∆x∆f, Σ∆y∆f ← 0

for n← 1 to n ≤ num(nbhs) do

call calculate qtilde()

call qtilde to primitive()

call flux quad GxII()

call qtilde to primitive()

call flux quad GxII()

call update delf()

end

Compute det = Σ∆x2Σ∆y2 − (Σ∆x∆y)2

Update Gxp

end function

Appendix A. 39

Algorithm 9: calculate qtilde

function calculate qtilde

call venkat limiter()

call update q tildes()

end function

Algorithm 10: qtilde to primitive

function qtilde to primitive

β = -qtilde[3]*0.5

u1 = qtilde[1]*temp; u2 = qtilde[2]*temp;

temp1 = qtilde[0] + β*(u1*u1 + u2*u2);

temp2 = temp1 - (log(β)/(γ-1));

ρ = exp(temp2);

pr = ρ*temp;

result[0] = u1;

result[1] = u2;

result[2] = ρ;

result[3] = pr;

end function

The pseudocode for wall dGx neg, wall dGy neg and the corresponding subroutines for outerindices,

and innerindices follow a similar structure. We refer the reader to the implementation at Hari-

Meshfree-CPP-Github for further implementational details, and for the split flux, wall flux,

and quad flux routines.

Algorithm 11: state update

function state update

Initialize U[4], Uold[4] ← 0

for n← 1 to n ≤ N do

call state update wall()

call state update outer()

call state update inner()

end

end function

Appendix A. 40

Algorithm 12: state update wall

function state update wall

call primitive to conserved()

Compute res sqr

Update Globaldata.prim

end function

Algorithm 13: state update outer

function state update outer

call conserved vector Ubar()

Compute res sqr

Update Globaldata.prim

end function

Algorithm 14: state update interior

function state update interior

call primitive to conserved()

Compute res sqr

Update Globaldata.prim

end function

A.3 Terms and Definitions

• RDP: Rate of Data Processing, RDP is defined as the time taken by the program to

perform the computations per grid point per iteration.

• SM utilization: SM utilization is the percentage of the time for which one or more kernels

were executing on the GPU streaming multiprocessors over the past sample.

• Memory utilisation: Memory utilisation is defined as the percentage of time for which

global (device) memory was accessed for read/write operations over the past sample.

• Warp: A warp is a group of 32 CUDA threads running in a lock-step manner.

• Achieved Occupancy: The ratio of active warps on a streaming multiprocessor to the

maximum number of active warps that can be theoretically supported by the SM.

• Branch Efficiency: The ratio of executed uniform flow control decisions over all the

executed conditionals.

Appendix A. 41

• Arithmetic Intensity: Arithmetic Intensity is defined as the ratio of work done by the

streaming multiprocessor to total data movement.

• Maxwellian Distribution: The Maxwell-Boltzmann distribution is a chi distribution

used to characterize the velocities of particles in idealized gases assuming free flow inter-

spersed with very brief collisions.

Bibliography

[1] Konark Arora, Rajan N K S, and Suresh Deshpande. “ON THE ROBUSTNESS AND

ACCURACY OF LEAST SQUARES KINETIC UPWIND METHOD (LSKUM)”. In: Aug.

2008.

[2] R. Courant, E. Issacson, and M. Rees. “On the solution of Nonlinear Hyperbolic Differential

Equations by Finite Differences”. In: Comm. Pure Appl. Math. 5 (1952), pp. 243–255.

[3] S.M. Deshpande. “On the Maxwellian distribution, symmetric form, and entropy conserva-

tion for the Euler equations”. In: NASA-TP-2583 (1986).

[4] S.M. Deshpande, P.S. Kulkarni, and A.K. Ghosh. “New developments in kinetic schemes”.

In: Computers Math. Applic. 35.1 (1998), pp. 75–93.

[5] S.M. Deshpande et al. “Theory and application of 3-D LSKUM based on entropy variables”.

In: Int. J. Numer. Meth. Fluids 40 (2002), pp. 47–62.

[6] Suresh Deshpande et al. “Least squares Kinetic Upwind Mesh-free Method”. In: Defence

Science Journal 60.6 (2010), pp. 583–597. doi: 10.14429/dsj.60.579. url: https:

//publications.drdo.gov.in/ojs/index.php/dsj/article/view/579.

[7] A.K. Ghosh and S.M. Deshpande. “Least squares kinetic upwind method for inviscid

compressible flows”. In: AIAA paper 1995-1735 (1995).

[8] Aaron Katz and Antony Jameson. A Comparison of Various Meshless Schemes Within a

Unified Algorithm. 2009.

[9] J. F. B. M. Kraaijevanger. “Contractivity of Runge-Kutta methods”. In: BIT Numerical

Mathematics 31.3 (1991), pp. 482–528.

[10] J.C. Mandal and S.M. Deshpande. “Kinetic flux vector splitting for Euler equations”. In:

Comp. & Fluids 23.2 (1994), pp. 447–478.

[11] NVIDIA Corporation. NVIDIA CUDA C Programming Guide. Version 3.2. 2010.

[12] V. Ramesh and S.M. Deshpande. “Least squares kinetic upwind method on moving grids

for unsteady Euler computations”. In: Comp. & Fluids 30.5 (2001), pp. 621–641.

42

