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Abstract

Vector autoregressive (VAR) models have been widely used for
modeling the temporal dependence of multivariate time series. Global-
local priors are widely used to induce shrinkage in such models. In this
article, we develop a very flexible model, the three-parameter-beta-
normal (TPBN) shrinkage prior based VAR with stochastic volatil-
ity considerations. Two efficient inference techniques, Markov Chain
Monte Carlo (MCMC) inference and empirical Bayes inference ap-
proach are proposed. The empirical Bayes inference approach is achieved
by the marginal maximum likelihood (MML), allowing our prior to
adapt to both sparse and dense settings. Moreover, the correspond-
ing post-analysis is proposed to induce the true sparsity into model
estimates under a fully Bayesian framework. An extensive simulation
study demonstrates that our model accurately captures the sparse
structure in the data, and significantly outperforms other state-of-
the-art models in both parameter estimation and variable selection.
Finally, we show that our approach has a promising forecast perfor-
mance compared to other competing models on the real macroeco-
nomic data.

Keywords: empirical Bayes, high dimensional, scale mixtures of normal dis-
tributions.
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1 Introduction

Vector autoregressive models (VARs) have been widely used to capture the
temporal dependence of multivariate time series, especially in macroeconomic
forecasting contexts. [51] is a seminal work in which VAR is applied to
macroeconomic research for policy makers. VARs are preferred because of
the flexibility and rich parametrization they offer. Their utility can further
be enhanced by extensions that incorporate time-varying parameters [46, 32]
and stochastic volatility [31] into the framework. However, all of those models
suffer from the curse of dimensionality which affects their scalability, and also
causes unreliable forecasts.

In the Bayesian literature, several ways have been proposed to alleviate
the curse of dimensionality in a VAR [20, 53, 24, 25, 31, 21, 37]. Notably,
[20] propose the Minnesota prior, which imposes an informative prior to re-
duce estimation error. Specifically, the Minnesota prior shrinks the diagonal
elements of the coefficient matrix at lag order 1 to ones and shrinks the re-
maining coefficients toward zeros. [25] extend the work in [53] and study the
optimal choice of the informativeness of the prior in the spirit of hierarchi-
cal modelling. Other variations include the sum of coefficients [20] and the
dummy initial observation prior [52].

Shrinkage priors are categorized into two classes, two-groups priors or
spike-and-slab priors [33], and global-local shrinkage priors [11, 5]. The spike-
and-slab prior is a discrete mixture of a point mass at zero (the spike) and
an absolutely continuous density (the slab) while the global-local prior is
considered as the normal scale mixture distribution. Mathematically, those
priors for random variables {θi} are hierarchically modeled as:

(θi|λi, τ) ∼ N (0, λ2
i τ

2) ,

λi ∼ glocal(λi) , τ ∼ gglobal(τ) , (1)

where λi is the local term characterising the individual behavior and τ is
the global term providing substantial shrinkage towards zero. Many variants
within the class of global-local shrinkage priors are proposed by differently
modeling the local and global distributions. [29] and [2] model λ2 with the
same exponential prior but model τ with the Jeffreys prior and a Gamma
prior, respectively. [11] proposed a horseshoe prior by employing a Half
Cauchy prior for both λ and τ . [4] extend the horseshoe to the horseshoe+
prior by introducing a hierarchical structure for the local term. Other widely
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used priors are the Dirichlet-Laplace prior proposed in [8] and the three-
parameter-beta prior in [1]. Such a shrinkage prior setup has at least two
convenient features for VAR with exogenous inputs. First, it exerts a strong
degree of shrinkage on all elements ofC but still provides additional flexibility
such that nonzero regression coefficients are permitted. A large class of
global-local shrinkage priors share this property [44, 12].

Motivated by the theory introduced in [19], shrinkage priors are studied in
VAR models. It states that forecasts are highly correlated to principle com-
ponents and Bayesian methods can perform equally well with appropriate
choice of a shrinkage prior. [40] develop a Bayesian methodology to perform
model variable selection using spike and slab priors, called the stochastic
search variable selection (SSVS) method. This class of models is flexible
in prior specification and performs well in terms of prediction relative to
traditional shrinkage priors. The limitation of SSVS is the expensive compu-
tation, which requires exploiting 2N possible combinations of sparse choices
in Markov chain Monte Carlo (MCMC), where N is the number of model
parameters. So it suffers from slow convergence and is intractable for large
datasets. Alternatively, global-local shrinkage priors are getting attention for
VARs due to their computational efficiency. In Bayesian VAR literature, [31]
study the Normal-Gamma prior, [21] explore the Horseshoe prior, and [32]
exploit the Dirichlet-Laplace prior.

This paper proposes a flexible shrinkage prior, the three-parameter-beta
(TPB) distribution for a Bayesian VAR model with stochastic volatility, and
addresses an important consideration pertaining to the selection of hyperpa-
rameters. The question of hyper-parameter selection for global-local priors
is also highlighted in [43]. To this end, two approaches are proposed. In
the first approach, we place hierarchical priors and conduct inference via an
efficient adaptive Metropolis Hasting algorithm [48]. But the hierarchical
Bayes approach does not quite address the issue of misspecification of hyper-
parameters, resulting from additional specification of priors. Instead of spec-
ifying values for hyper-parameters, we propose a Monte Carlo Expectation
Maximization (MCEM) algorithm that can learn optimal hyper-parameters
from data. Thus it is treated as an Empirical Bayes method [13]. Through
several experiments on synthetic data, we illustrate that our model achieves
better model fitting performance than other state-of-the-art models.

One caveat of typical global-local shrinkage priors is that they cannot
naively perform variable selection, as they shrink the values towards zero, in a
continuous spectrum without forcing the values to be exact zeros. Therefore,
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those models with global-local priors cannot directly generate true sparse
estimates. [32, 30] induce sparsity and shrinkage in both the time-varying
parameter model and conjugated VAR respectively. Specifically, they con-
sider a two-stage approach with the signal adaptive variable selector (SAVS).
In our work, instead of using SAVS, we minimize posterior risk (posterior
expected loss) with respect to parsimonious estimates in [28] via adaptive
Lasso and sample parsimonious estimates following the approach in [56]. We
conduct this post-analysis on our model and other competitive models and
decompose the fitting measures into two - the model selection measure and
the bias measure. We find our proposed model still outperforms other models
in both fitting measurements, in the synthetic case study.

The remainder of the article is structured as follows. Section 2 discusses
the vector autoregressions with stochastic volatility case in the context of
the three-parameter-beta-normal prior. Section 3 proposes both MCMC
Bayesian inference and MCEM empirical Bayesian inference. In Section 4,
we develop the variable selection procedure in the context of VAR models.
Section 5 carries out an extensive simulation study and shows the superior
estimation performance of our model compared to state-of-the-art models;
we also show robust forecasting performance on real macroeconomic data.
The conclusions and discussions are presented in Section 6.

2 Model

This section first introduce the general vector autoregressive (VAR) model,
and then provide the details on the three-parameter-beta-normal prior in the
context of VARs.

2.1 Vector Autoregressive Model (VAR)

Suppose yt ∈ RM follows a VAR(P) process, which satisfies the following
recursion,

yt =
P∑
i=1

Aiyt−i + εt , εt ∼ Nm(0,Ωt) (2)

where A1, . . . ,AP are real-valued M × M matrices of autoregressive co-
efficients; εt is M dimensional Gaussian noise with zero mean and non-
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degenerate time-dependent variance-covariance matrix Ωt. [7, 57] assume
Ωt is deterministic and diagonal, and use inverse gamma prior to model er-
ror variance parameters. Several works assume Ωt is deterministic but not
diagonal and model it via different approaches. [25, 38] model the coeffi-
cients via normal-inverse-Wishart family; [24, 53, 55] consider the Cholesky
decomposition of the precision matrix and impose restrictions on the lower
triangular matrix. [45, 54] reparametrize Σ via the Cholesky factorization,
Ωt = Γ′ΛΓ where Γ is a lower triangular matrix with 1’s on the diagonal
and Λ is a diagonal matrix of the eigenvalues of Ω. Recently, time-varying
variance-covariance Ωt has garnered more attention. [32] consider a general
factorization such that Ωt = UtStU

′
t , whereUt denotes a lower uni-triangular

matrix following independent random walks, and St is positive diagonal ma-
trix.

Following [17, 31] we consider the stochastic volatility model for time-
varying noise. Specifically, We factorize Ωt as

Ωt = UHtU
′ (3)

where U denotes a lower triangular matrix with unit diagonal and Ht =
diag(eh1t , . . . , ehMt) is a diagonal matrix. We rewrite the error term as εt =
UH0.5

t vt where vt ∼ N (0, I). Here, U is assumed to be fixed over time,
because [46, 9] found little variation in such coefficients. hjt’s are called
log-volatilities and commonly modeled by independent AR(1) processes as

hjt = µj + ρj(hjt−1 − µj) + ηt, ηt ∼ N (0, σ2
ηj) (4)

where µj denotes the unconditional mean, ρj the persistence parameter, and
σηt the error variance of the log volatility process. The prior specification
on the parameters of the log volatility equation follows [35]. Recently, [37]
propose a factor stochastic volatility model to model the error term for huge-
dimensional data.

[16, 15] propose an approach to fast inference coefficients. However, it
requires a specific structure of the coefficient prior variances, which cannot
be applied to our model. [9, 36, 39] emphasize the computational gains
that arise from a transformed system, where the errors in different equations
are mutually independent of one another. Assume U is known. Letting
y∗jt = yjt −

∑j−1
l=1 ujle

0.5hltvlt, we have M conditional independent processes
and the generic equation for dimension j is written as

y∗j· = Xαj + diag(σ∗jj1, . . . , σ
∗
jjT )vj , (5)
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where X = (x1, . . . ,xT )′ and xt = (y′t−1, . . . ,y
′
t−P )′, vj = (vj1, . . . , vjT )′

and αj be the jth row of the coefficient matrix A = (A1, . . . , Ap). Also
σ∗jjt = ujje

0.5hjt = e0.5hjt . When we assume U is unknown, we also have M
conditional independent processes and the generic equation for variable j is
written as

yj· = X∗jα∗j + diag(σ∗jj1, . . . , σ
∗
jjT )vj , (6)

whereX∗j = (x∗j1, . . . ,x∗jT )′ and x∗jt = (y′t−1, . . . ,y
′
t−P , e

0.5h1tv1t, . . . , e
0.5hj−1,tvj−1,t)

′,
and α∗j = (α′j, uj1, . . . , uj,j−1)′.

For each equation 5, with scale mixture prior on coefficients αj, we allow
the fast sampling method in [6] to sample αj from its posterior distribution.
Specifically, to sample any random vector from a structured multivariate
Gaussian distribution Np(µ,Σ), where Σ = (Φ′Φ + D−1)−1, µ = ΣΦ′α, D ∈
Rp×p is symmetric positive definite, Φ ∈ Rn×p, and α ∈ Rn×1. The fast
inference procedures are designed as

Algorithm 1: Proposed algorithm

(i) Sample u ∼ N (0, D) and δ ∼ N (0, In) independently.

(ii) Set v = Φu+ δ.

(iii) Solve (ΦDΦ′ + In)w = (α− v).

(iv) θ = u+DΦ′w.

When D is diagonal, as in the of case of global-local priors in (1), the
complexity of the proposed algorithm is O(n2p). In comparison to the O(p3)
complexity of the completing algorithm in [50], when p� n, this algorithm
offers huge computational gains.

2.2 Three-parameter-beta-normal prior

The three-parameter-beta prior (TPB) distribution for a random variable X
is defined by the density function

f(x; a, b, φ) =
Γ(a+ b)

Γ(a)Γ(b)
φbxb−1(1− x)a−1{1 + (φ− 1)x}−(a+b) , (7)

for 0 < x < 1, a > 0, b > 0 and φ > 0 and is denoted by TPB(a, b, φ). It
is a subclass of the Gauss hypergeometric (GH) distribution proposed in [3]
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and the compound confluent hypergeometric (CCH) distribution proposed in
[26]. a and b control the spike at zero and the tail characteristics, respectively.
When 0 < a < 1 and 0 < b < 1, the density in (7) is bimodal, with modes at
0 and 1. φ controls the strength of shrinkage effect. Smaller values of φ put
greater probabilities on the neighborhood of X = 1 while larger values of φ
move more probabilities towards X = 0 [1]. With φ = 1, this distribution is
identical to a beta distribution.

The normal scale mixture distribution constructed with three-parameter-
beta prior, termed three-beta-parameter-normal (TPBN) prior [1], for pa-
rameter β, is defined by

β|ψ ∼ N (0,
1

ψ
− 1) , with ψ ∼ TPB(a, b, φ) (8)

where the shrinkage parameter ψ follows TPB distribution. The bimodal
property of ψ induces the shrinkage behavior: When ψ approaches 0, it
creates a diffuse prior on β; when ψ is near 1, it induces strong shrinkage on
β. And decreasing φ leads ψ close to 1 and then supports stronger shrinkage
[1, 57]. Note that the special case for a = b = 1/2 gives the horseshoe
prior for β [11] and when a = φ = 1 and b = 1/2, the distribution of
β is the Strawderman-Berger distribution. An alternative representation
of the TPBN can be derived via replacing 1

ψ
− 1 by τ . The hierarchical

representation is

β|τ ∼ N (0, τ), τ ∼ G(a, w), and, w ∼ G(b, φ) (9)

where G refers to a gamma distribution. Note the TPBN is a hierarchical
variant of the Normal-Gamma prior [27].

In the context of VARs, we employ the TPBN prior to autoregressive
coefficients A and discuss the column-wise and row-wise layers of shrink-
age with scaling parameters. We notice that row-shrinkage and column-
shrinkage modifications have been applied to group factor analysis [57] and
factor stochastic volatility models [34] and VAR models [31]. The lag-specific
shrinkage modification has been studied in a static factor framework in [7].

We place the TPBN priors on coefficient matrix A ∈ RT×MP . Each
element aij depends on global shrinkage parameter λ and individual shrinkage
parameter ψij and the prior is given by

aij|λ, ψij ∼ N
(

0,
1

λ
(

1

ψij
− 1)

)
, ψij ∼ TPB(a, b, ρ) , (10)
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for i = 1, . . . , T, j = 1, . . . ,MP .
The hyper-parameters in the TPB distribution can be chosen depending

on the specific dataset. We place Gamma prior on global shrinkage param-
eter, λ ∼ G(c, d). The hyper-parameters are usually set as c = 0.01 and
d = 0.01 for large variance in the prior. Based on the hierarchical represen-
tation in (9), by letting θi = 1

ψi
− 1 and introducing dummy variables δij we

have the hierarchical representation as

aij|λ, θij ∼ N (0,
1

λ
θij) , θij ∼ G(a, δij), δij ∼ G(b, ρ) . (11)

For hyper-parameter ρ, we put a conjugate prior such that ρ
1
2 ∼ C+(0, 1)

where C+(0, 1) is the standard half-Cauchy distribution.
And in terms of the principle of parsimony, we put the TPBN priors on

the free-diagonal elements of U in (3) to put them close to zeros.

3 Inference

This section proposes two efficient inference schemes motivated by the chal-
lenge of learning shape parameters a and b in Equation 11. Since TPBN
prior is very flexible and there exist no conjugate priors on shape parame-
ters, learning those hyper-parameters is a difficult task. The two inference
schemes are detailed below.

In the first scheme, we employ a hierarchical Bayes approach via assum-
ing a ∼ Exp(1), b ∼ Exp(1). Since both priors are non-conjugate, we sample
them via an adaptive metropolis-with-Gibbs algorithm [48]. The hierarchical
Bayes approach is a fully Bayesian method allowing the uncertainty measures
on both parameters. However, the MCMC inference mixes poorly even with
the efficient adaptive sampling approach. If the uncertainty quantification
of hyper-parameters is not of interest, we advocate an alternative empirical
Bayes inference schedule. Without specifying any additional prior, we select
the hyper-parameters by maximizing the marginal likelihood. Thus it alle-
viates the burden of hyper-parameter tuning by the user. Specifically, in ac-
cordance with the model specification in (2) and (3), the marginal likelihood,
f(y) =

∫
f(y|A,U ,H)π(A,U ,H)d(A,U ,H) measures the performance of

the model with respect to its prior. Maximizing the marginal likelihood with
respect the hyper-parameters of interest can help us learn the most likely
sparsity level from the data. We present MCMC inference in Section 3.1.
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Given the derivation of the MCMC inference, we provide the MCEM infer-
ence in Section 3.2.

3.1 Posterior inference

This section describes the Gibbs sampling scheme. We derive and illustrate
some important conditional posterior distributions in the section and leave
other details to the Appendix.

The parameters of A and U are sequentially and conditionally sampled
from the posterior distribution according to the M unrelated processes men-
tioned in (5). Mathematically, we have

p(A,U |H ,y) ∝ p(α1|H ,y)
M∏
j=2

p(αj,uj|α1, . . . ,αj−1,H ,y) (12)

where H = (H1, . . . ,HT ) and ui denote the free parameters on the ith row
of U .

For the jth term in (12), the conditional posterior can be written as

p(αj,uj|α1, . . . ,αj−1,H ,y)

∝ N (yj·|X∗jα∗j, diag(σ∗2jj1, . . . , σ
∗2
jjT ))N (αj|µA,j, diag(σ2

A,j))N (uj|µB,j, diag(σ2
U,j))

= N ([α′j,u
′
j]
′|A−1

j (C ′∗jzj + µ′jΛ
−1
∗j ), A−1

j ) (13)

where Aj = (C ′∗jC∗j + Λ−1
∗ ) with C∗j = diag(σ∗−1

jj1 , . . . , σ
∗−1
jjT )X∗j, zj =

diag(σ∗−1
jj1 , . . . , σ

∗−1
jjT )yj·, µj = (µ′A,j,µ

′
B,j)

′ and Λ∗j = diag([σ2
Aj
,σ2

Bj
]). When

assuming zero-mean prior µj = 0, and MP � T , we would employ the al-
gorithm 1 to fast sample model parameters A and U .

The conditional posteriors of auxiliary variables in TPBN for A and U
can be derived as closed-form expression. Here, we show those conditional
posteriors for coefficient matrix A for example. Given the hierarchical repre-
sentation in (11), the conditional posteriors of local-shrinkage scale variables
θij and δij follow a generalized inverse Gaussian (GIG) distribution and a
Gamma distribution as

θij|aij, λ, a ∼ GIG(a− 0.5, 2δij, a
2
ijλ) ,

δij|a, θij ∼ G(b+ a, ρ+ θij) . (14)
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The conditional posterior distribution of global-shrinkage scale variable λ is

λ|A, θ, c, d ∼ G(c+ 0.5k, d+ 0.5
T∑
i=1

MP∑
j=1

a2
ij

θij
) . (15)

The sampling scheme for other hyper-parameters a, b and ρ in the TPB
prior are discussed in the Appendix. We adapt the efficient Gibbs sam-
pling algorithm in [35] to simulate the full history of log volatilities hm =
(hm1, . . . , hmT ) for m = 1, . . . ,M .

3.2 Empirical Bayesian approach

We propose an Monte Carlo Expectation Maximization algorithm to obtain
the MML estimates of φ = (aA, bA, aU , bU). The approach is self-adaptive as
the hyper-parameters can be learned from the data.

Given the TPBN based hierarchical representation in (11), the joint like-
lihood of our model is given by

log p(y|X,A,U ,H) +
∑

S=(A,U)

[
log p(S|λS,θS) + log p(θS|aS, δS) + log p(δS|bS, ρS)

+ p(ρS) + p(λS)
]

=
M∑
i=1

MP∑
j=1

[
log G(θAij|aA, δAij) + log G(δAij|bA, ρA)

]
+

M∑
i=1

i−1∑
j=1

[
log G(θUij|aU , δUij) + log G(δUij|bU , ρU)

]
+ terms not involving φ

Then, at the kth iteration of the EM algorithm, the conditional log-likelihood
on φ(k−1) and y is given by

Q(φ|φ(k−1)) =
M∑
i=1

MP∑
j=1

[
− log(Γ(aA)) + aAEφ(k−1) [log θAij + log δAij|y]

− log(Γ(bA)) + bAEφ(k−1) [log δAij + log ρA|y])
]

+
M∑
i=1

i−1∑
j=1

[
− log(Γ(aB)) + aBEφ(k−1) [log θBij + log δBij|y]

− log(Γ(bB)) + bBEφ(k−1) [log δBij + log ρB|y])
]

(16)
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We maximize Q(φ|φ(k−1)) over φ in the M-step. That is to find φ ≥ 0 such
that

∂Q

∂aA
= −M2Pψ(aA) +

M∑
i=1

MP∑
j=1

Eφ(k−1) [log θAij + log δAij|y] = 0 ,

∂Q

∂bA
= −M2Pψ(bA) +

M∑
i=1

MP∑
j=1

Eφ(k−1) [log δAij + log ρA|y] = 0 ,

∂Q

∂aU
= −M(M − 1)/2ψ(aU) +

M∑
i=1

i−1∑
j=1

Eφ(k−1) [log θUij + log δUij|y] = 0 ,

∂Q

∂bU
= −M(M − 1)/2ψ(bU) +

M∑
i=1

i−1∑
j=1

Eφ(k−1) [log δUij + log ρU |y] = 0 .

(17)

where ψ = d(Γ(x))
dx

denotes the digamma function. We can solve φ in (17)
using any fast root-finding algorithm. The posterior expectations in (17) are
approximated from the mean of N Gibbs samples based on φ(k−1) where N
is the number of Monte Carlo samples. Posterior samples are stimulated
according to the MCMC procedures proposed in Section 3.1. This approach
is well known as Monte Carlo expectation maximization (MCEM) in [14, 41].

Although MCMC and MCEM provide efficient inference schemes, they
do not allow for variable selection. In next section, we discuss the two-stage
procedure for variable selection within a fully Bayesian framework.

4 Variable selection

Since the TPBN prior is a global-local shrinkage prior, it cannot assign exact
zero mass to sparse coefficients. This implies that this model cannot intro-
duce the true sparsity into parameters directly. However, sparsity is claimed
to be important in [32], wherein sparsification reduces the uncertainty of
estimates and yields improved forecasting performance in time-varying pa-
rameter models. [32] employ the single adaptive variable selection (SAVS)
estimate proposed in [47] - this method is treated as a soft-thresholding
approach acting on the posterior mean. Alternatively, we conduct a post-
analysis method to select variables based on the “decoupled shrinkage and
selection” (DSS) method proposed in [28].
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Since the coefficients for the auto-regression are of interest, we discuss the
variable selection for coefficient matrix A, and dismiss the selection for U
since those parameters are not of interest. Assume Â is the posterior mean of
A. We consider the problem of predicting new observations with new design
matrix X̃ such that ỹt ∼ N (Ax̃t,Ωt) where ỹt and x̃t are the tth column of
ỹ and X̃ respectively. We summarize the original model E(ỹt|x̃t) = Ax̃t by
finding a parsimonious coefficient matrix Γ such that Γx̃t closely matches the
prediction E(ỹt|x̃t). Formally, we define a loss function for the discrepancy
in prediction between the full model and parsimonious summary model as

L(ỹ,Γ) = λ‖Γ‖0 + ‖X̃Γ′ − X̃A′‖2
2 (18)

where ‖ · ‖0 =
∑

ij 1(Γij 6= 0). This loss sums two components, one of which
is a parsimony on the model parameters Γ and the other of which is the
squared prediction loss. By considering X̃ = X as a conventional choice [28]
and taking an expectation with respect to posterior distribution of A, we
write the posterior expected loss as

L(Γ) ≡ E(L(ỹ,Γ)) = λ‖Γ‖0 + T−1‖XΓ′ −XÂ′‖2
2 . (19)

where we drop constant terms with respect Γ.
The equivalent representation under a standard uni-variate regression

framework is

L(Γ) = λ‖vec[Γ]‖0 + T−1‖(IM ⊗X)vec[Γ′]− (IM ⊗X)vec[Â′]‖2
2 . (20)

Compared with the DSS loss function in (19) of [28], the only difference is
the coefficient of the squared prediction loss. However, the solution of Γ does
not change as the the solution of weight λ would scale it accordingly. On
the other hand, the counting penalty λ‖Γ‖0 yields an intractable NP-hard
combinatorial problem. We apply a similar local linear approximation [28]
by solving the following surrogate optimization:

Γ̂ = arg min
Γ
T−1‖XΓ′ −XÂ′‖2

2 + λ
M∑
i=1

MP∑
j=1

|Γij|
|Âij|

, (21)

where Âij is the (i, j)th element in the posterior mean Â and λ is chosen using
10-fold cross-validation. This optimization is essentially an adaptive LASSO
regression [58] with weights 1

|Γ̂ij |
. An efficient gradient descent algorithm to

12



find LASSO solutions is proposed in [22] and we use the R package glmnet
to solve the adaptive LASSO regression in Equation (21).

One key shortcoming of conducting the DSS method is that uncertainty
quantification about the Γ̂ is not possible as we estimate Γ̂ by solving the
optimization problem in Equation (21). Recently, [56] develop methods to
get estimates of posterior uncertainty in both linear and non-parametric re-
gression frameworks. This work propagates posterior uncertainty from the
original fitted model though a sparse summary. It projects the full pos-
terior distribution onto the space of the sparse summary model using the
restricted set of variables. We adapt it into our self-adaptive VAR model
based on the DSS method. Specifically, we calculate the projected poste-
rior for the summary using the posterior samples of A(s) ∼ p(A|y) and
the posterior samples of parsimonious estimates Γ are obtained through
Γ(s) = arg min

Γ
T−1‖XΓ′ − X(A(s))′‖2

2 + λ
∑M

i=1

∑MP
j=1

|Γij |
|Âij |

, where s is the

index of samples.

5 Experiments

We conduct an extensive simulation study to illustrate the superior perfor-
mance of our model on parameter estimation and variable selection. We
also apply our model to real macroeconomic data and show that our model
performs well relative to other commonly used models. We use density pre-
dictions as a metric to evaluate the performance of the models on the macroe-
conomic data.

5.1 Simulation study

We compare our method with a range of commonly used alternatives in this
section. We investigate sparse, intermediate and dense data generating pro-
cesses (DGPs) where the length of time series T = 50, 150 or 250 and the
dimension of data m = 20, 50. The probability of a diagonal entry to be
non-zero is 0.8 and the probability of an off-diagonal entry to be non-zero is
0.01, 0.2 and 0.5 in each setting. The non-zero elements are randomly gener-
ated from log Gaussian distributions to guarantee the discrepancy between
the nonzero value and zero and add a random sign + or − with the equal
probability. Moreover, we specify the mean µ and standard deviation σ of
the diagonal (D) and the off-diagonal (O) entries are chosen as follows:
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• Sparse: µD = σD = µO = σO = 0.3

• Intermediate: µD = σD = 0.15 and µO = σO = 0.1

• Dense: µD = σD = 0.15 and µO = σO = 0.01.

As for a random variable X following a log Gaussian distribution with pa-
rameters µ and σ, given the desired mean µX and variance σ2

X , we can sample

it using parameters derived by µ = ln

(
µ2X√
µ2X+σ2

X

)
and σ2 = ln

(
1 +

σ2
X

µ2X

)
. To

ensure the stationarity of this dynamic system, we employ rejection sampling
to get stationary coefficient matrices Ais, in which all largest eigenvalues of
coefficient matrices are within a unit disk.

Concerning the errors, we use a single factor stochastic volatility (SV)
specification with factor loadings generated from N (0.001, 0.0012) to roughly
match the above scaling. The AR(1) process in SV model is assumed to
have mean µσi = −12 with persistences ρi = 0.99 and innovation standard
deviations ψσi = 0.1.

For each of the 252 settings, we simulate 50 independent datasets, and
for each of them we run MCMC or MCEM algorithm to obtain 2000 poste-
rior draws after a burn-in of 1000. Our proposed model with both MCMC
inference and MCEM inference are compared with the state-of-the-art meth-
ods. We considered Bayesian vector autoregression with stochastic volatility
model (BVAR-SV) with Normal Gamma (NG) priors with three different
shrinkage structures (global, rowwise and columnwise) [31], horseshoe (HS)
priors with the same three shrinkage structures [21], stochastic search variable
selection (SSVS) priors [24] and Minnesota priors [25]. All MCMC inferences
consider total 3000 iterations, the first 1,000 of which is discarded as burn-in.
As for the MCEM inference, we also consider total 3000 iterations but we
estimate the hyper-parameter in the first 1000 iterations and fix them in the
next 2000 iterations. Due to space constraints, we report the results for the
T = 50 , 250 cases, and for models with the global shrinkage structure.

We compare the posterior median to the true values of coefficient matrix
A and compute the root mean square errors. For each setting, we report
the mean and standard deviation of the corresponding RMSEs in Table 1.
The table shows that TPBN models have significantly smaller RMSEs than
other models for all scenarios of DGP. Among the two TPBN models, the
fitting performance on MCMC and MCEM are very similar. On the other
hand, we find that the posterior distribution of shape parameters a and b
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in (11) is as flat as our proposed prior, i.e. Exp(1), which implies that it is
difficult to learn the sparsity level through MCMC. Additonally, there is a
significant discrepancy between the posterior median of hyper-parameters a
and b in MCMC and the point estimates in MCEM. So the point estimates
from MCEM would be more reasonable. The full results are reported in the
Appendix.

Moreover, for all models, through solving the optimization problem pro-
posed in (21), we conduct variable selection and obtain parsimonious coef-
ficient matrix A. We then compare the average hit rate that measures the
percentage of correctly estimated zeros [32] in Table 2. The higher the prob-
ability is, The better fitting performance the model achieves. Moreover, we
computed the root mean square error of the nonzero entries on the parsi-
monious coefficient matrix A in Table 3. Specifically, assuming A is the
ground truth and Â is the estimate, the root mean square error is defined

as RMSE(N) =
√∑

(i,j)∈I(Aij − Âij)2 where I is a set of indexes such as

(i, j) ∈ I if and only if either Aij 6= 0 or Âij 6= 0. Table 2 shows that
our TPBN model has higher average hit rate than other models, suggesting
that it achieves better variable selection and it is more likely to find the
true sparse structure in coefficients. Moreover, within TPBN model, as the
length of time series increases, MCEM archives better variable selection than
MCMC.

In addition, Table 3 implies that for those non-zero coefficients, TPBN has
less biased estimation than other models. We find that NG method results
in significantly large bias when T = 50. This is because the NG method is
very sensitive to the adaptive lasso optimization in the post analysis when T
is small, where the optimization generates large biased parsimonious estima-
tion. Moreover, comparing amongst MCMC and MCEM within our TPBN
model, we find the same behavior as in variable selection - As T increases,
MCEM outperforms MCMC in terms of the fitting performance on nonzero
entries.

5.2 Real data analysis

We use the the macroeconomic data constructed in [42]. The data are sam-
pled at a quarterly frequency spanning from 1959Q2 to 2015Q2. All data
are transformed to be approximately stationary using the same procedures
in [31]. Forecasting is performed on three subsets of the dataset - the small
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Table 1: Root mean square errors on coefficient matrix A for different sim-
ulation scenarios.

S20 S50 I20 I50 D20 D50

T = 50
NG 0.229 0.067 0.235 0.057 0.169 0.065

(0.542) (0.032) (0.762) (0.009) (0.486) (0.076)
HS 0.223 0.044 0.174 0.062 0.324 0.043

(0.514) (0.009) (0.600) (0.008) (0.926) (0.066)
SSVS 0.148 0.210 0.151 0.125 0.185 0.234

(0.059) (0.193) (0.060) (0.135) (0.190) (0.285)
Minnesota 0.069 0.083 0.134 0.114 0.055 0.074

(0.042) (0.043) (0.054) (0.022) (0.038) (0.043)
TPBN MCMC 0.032 0.029 0.047 0.048 0.025 0.019

(0.010) (0.005) (0.007) (0.005) (0.011) (0.004)
TPBN MCEM 0.032 0.029 0.046 0.048 0.025 0.019

(0.010) (0.005) (0.008) (0.005) (0.011) (0.003)

T = 250
NG 0.198 0.206 0.251 0.093 0.260 0.120

(0.321) (0.420) (0.312) (0.260) (0.387) (0.271)
HS 0.225 0.240 0.248 0.233 0.323 0.179

(0.290) (0.456) (0.263) (0.351) (0.398) (0.335)
SSVS 0.131 0.102 0.139 0.089 0.117 0.126

(0.125) (0.109) (0.121) (0.037) (0.104) (0.122)
Minnesota 0.109 0.071 0.145 0.119 0.075 0.057

(0.102) (0.029) (0.093) (0.069) (0.087) (0.040)
TPBN MCMC 0.019 0.015 0.038 0.032 0.019 0.015

(0.010) (0.004) (0.019) (0.006) (0.006) (0.002)
TPBN MCEM 0.019 0.016 0.037 0.032 0.019 0.015

(0.009) (0.005) (0.016) (0.005) (0.006) (0.002)

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior.
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Table 2: Average hit rate on the parsimonious coefficient matrix A for dif-
ferent simulation scenarios..

S20 S50 I20 I50 D20 D50

T = 50
NG 0.873 0.987 0.884 0.988 0.884 0.989

(0.077) (0.008) (0.075) (0.014) (0.072) (0.010)
HS 0.827 0.978 0.816 0.972 0.816 0.971

(0.043) (0.010) (0.048) (0.013) (0.048) (0.011)
SSVS 0.803 0.982 0.807 0.975 0.802 0.983

(0.038) (0.009) (0.044) (0.012) (0.048) (0.009)
Minnesota 0.901 0.988 0.835 0.982 0.904 0.989

(0.044) (0.005) (0.043) (0.007) (0.032) (0.005)
TPBN MCMC 0.931 0.998 0.905 0.991 0.918 0.995

(0.053) (0.004) (0.063) (0.009) (0.050) (0.005)
TPBN MCEM 0.931 0.998 0.911 0.993 0.918 0.995

(0.049) (0.003) (0.058) (0.009) (0.044) (0.005)

T = 250
NG 0.826 0.914 0.790 0.920 0.790 0.907

(0.092) (0.046) (0.108) (0.036) (0.102) (0.030)
HS 0.803 0.912 0.785 0.893 0.822 0.917

(0.056) (0.030) (0.063) (0.04) (0.063) (0.030)
SSVS 0.848 0.911 0.831 0.898 0.848 0.914

(0.044) (0.024) (0.051) (0.037) (0.046) (0.025)
Minnesota 0.857 0.939 0.789 0.886 0.888 0.956

(0.055) (0.017) (0.038) (0.022) (0.064) (0.015)
TPBN MCMC 0.924 0.968 0.861 0.938 0.907 0.961

(0.063) (0.029) (0.058) (0.025) (0.059) (0.019)
TPBN MCEM 0.932 0.969 0.888 0.943 0.912 0.957

(0.048) (0.023) (0.047) (0.021) (0.043) (0.018)

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior.
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Table 3: Root mean square error on non-zero entries of the parsimonious
coefficient matrix A for different simulation scenarios.

S20 S50 I20 I50 D20 D50

T = 50
NG 1.240 158.782 68.381 21.421 5.594 134.862

(2.515) (380.134) (450.560) (67.354) (35.332) (294.822)
HS 0.915 0.447 1.649 0.252 1.273 0.172

(1.957) (0.210) (6.929) (0.183) (3.455) (0.183)
SSVS 0.433 2.100 0.335 0.436 0.335 0.630

(0.230) (2.358) (0.193) (0.425) (0.345) (0.707)
Minnesota 0.257 0.856 0.288 0.384 0.116 0.249

(0.157) (0.556) (0.139) (0.104) (0.098) (0.161)
TPBN MCMC 0.133 0.210 0.121 0.133 0.047 0.032

(0.054) (0.035) (0.042) (0.029) (0.032) (0.014)
TPBN MCEM 0.132 0.211 0.115 0.133 0.046 0.031

(0.050) (0.037) (0.027) (0.028) (0.031) (0.012)

T = 250
NG 0.948 2.044 0.830 0.503 0.802 0.532

(1.583) (4.231) (1.077) (1.575) (1.265) (1.367)
HS 0.847 2.114 0.713 0.867 0.780 0.622

(1.349) (5.000) (0.879) (1.583) (1.082) (1.332)
SSVS 0.456 0.825 0.341 0.255 0.248 0.354

(0.400) (1.362) (0.275) (0.111) (0.206) (0.361)
Minnesota 0.320 0.418 0.322 0.336 0.144 0.134

(0.253) (0.205) (0.212) (0.254) (0.167) (0.089)
TPBN MCMC 0.100 0.159 0.119 0.115 0.044 0.028

(0.066) (0.186) (0.073) (0.074) (0.039) (0.011)
TPBN MCEM 0.097 0.145 0.101 0.106 0.040 0.029

(0.068) (0.095) (0.062) (0.038) (0.028) (0.010)

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior.
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version evaluates forecasts over the three variables of primary interest: GDP
growth, Federal Funds Rate and GDP deflator. The medium and large ver-
sions take into consideration a total of 7 and 21 features respectively, follow-
ing the setup in [31].

We include the same set of models in Section 5.1, namely a normal gamma
prior VAR, horseshoe prior VAR, a hierarchical Minnesota prior VAR and the
SSVS prior VAR. Following [10], we specify the prior mean with A1 to be a
diagonal matrix with entries 0.9, encouraging strong persistence and specify
all other prior mean as zeros. And all models consider P = 4 lags in this
section. For all MCMC inference approaches, we take 3000 iterations wherein
2000 iterations are treated as burnin. As for MCEM inference approach,
we also take 3000 iterations in which the first 1000 iterations are used to
estimate hyper-parameters and the latest 1000 iterations are used for model
forecasting to make a fair comparison with MCMC approaches.

Forecasts are evaluated over a long hold-out sample spanning from 2002Q1
to 2015Q2. We conduct the n-step-ahead forecast for n = 1, 2, 3, 4. We re-
cursively forecast and expand the initial estimation window for 50 runs. For
each run, we use the log predictive density to evaluate the quality of pre-
dictive density via the predictive posterior median, and then we report the
trimmed mean over 50 runs by 20%. In addition, we only report the results
with global shrinkage structure for NS, HS, TPBN in Table 4. Results for
the full set of experiments, and corresponding boxplots for the 50 runs are
reported in the Appendix. Table 4 shows that when M = 3, SSVS and Min-
nesota perform better in forecast; one possible explanation for this finding
is that, as pointed out in [18], the macroeconomic data is not sparse. In
this case, our TPBN model with MCEM inference outperforms other global-
local prior based methods in most of versions of datasets. In the medium
version, we find that our TPBN model with MECM inference approach dom-
inates other models except for the two-step-ahead forest. Finally, the result
in the large version shows that our model with MCMC inference outper-
forms others. Moreover, we find that among the two inferences of our model,
in the small and medium version, MCEM approach consistently outperforms
MCMC inference in terms of model forecast while in the large version MCMC
performs better than MCEM. It may be because that MCEM effectively learn
the hyper-parameters in the small and medium version, which contributes to
better forecast on the density distribution at the out-of-sample time steps.
In the large version, since the hyper-parameters are learned from more la-
tent coefficients, the better hyper-parameter learning achieved by MCMC
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contributes to better posterior sampling and subsequently better forecasting
performance.

Table 4: Average log predictive density to a large VAR-SV : 2002Q1 - 2015Q2

NG HS SSVS Minnesota TPBN MCMC TPBN MCEM

Small (M = 3)
One-step-ahead 12.721 12.927 13.047 12.962 12.859 12.970
Two-step-ahead 11.800 12.205 12.293 12.241 12.133 12.171
Three-step-ahead 11.198 11.582 11.658 11.630 11.515 11.548
Four-step-ahead 10.842 10.201 11.252 11.272 11.136 11.175

Medium (M = 7)
One-step-ahead 27.028 26.850 27.067 26.910 26.944 27.127
Two-step-ahead 26.138 26.499 26.492 26.528 26.324 26.492
Three-step-ahead 25.489 25.868 25.752 25.697 25.684 25.888
Four-step-ahead 25.118 25.347 25.153 25.264 25.177 25.361

Large (M = 21)
One-step-ahead 67.288 64.764 64.780 57.180 68.634 67.116
Two-step-ahead 66.374 68.843 68.757 67.246 69.299 68.837
Three-step-ahead 65.179 68.636 67.888 66.825 69.371 67.449
Four-step-ahead 64.661 68.141 67.717 67.717 68.447 66.576

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior.
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6 Conclusion

We have introduced the TPBN prior to Bayesian vector autoregressive (BVAR)
models. To perform effective inference on the flexible model, we propose two
efficient inference schemes, Markov Chain Monte Carlo (MCMC) inference
and an empirical Bayes approach via Monte Carlo Expectation Maximization
(MCEM) to estimate the hyper-parameters based on the marginal maximum
likelihood (MML). We also provide the variable selection procedures in the
context of BVARs. We find that TPBN shows superior performance on pa-
rameter estimation and variable selection in comparison to other existing
state-of-the-art models in the synthetic study wherein we evaluate the per-
formance over 50 simulations each of 18 synthetic datasets, with varying
levels of size and sparsity.

As for the forecasting performance, our model performs robustly well in
different settings. In the macroeconomic data, although our model performs
worse than SSVS and Minnesota approaches in the small version of data,
our model performs equally well or better than other global-local prior based
models. On the other hand, our model achieves notably better forecasting
performance in medium and large versions in comparison to other models.
In addition, although the MCMC and MCEM inference in our model have
similar performance on parameter estimation and variable selection, MCEM
consistently outperforms MCMC in terms of forecasting performance on the
small and medium subsets of the macroeconomic data but MCMC outper-
forms MCEM on the large subset. The reason may be that in the small and
medium version, MCEM can learn the hyper-parameters effectively whereas
MCMC does not.
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A Sampling for the hyper-parameters in TPBN

According to the hierarchical representation in VAR in (11), the sampling
procedures for the hyper-parameters a, b and ρ are given as follows:

Because ρ
1
2 ∼ C+(0, 1) has the hierarchical representation ρ ∼ G(1

2
, c)

and c ∼ G(1
2
, 1) . The posterior of ρ can be sequentially sampled from the

conditional posterior distributions

ρ|δ, c ∼ G(
1

2
+ TMP, c+

T∑
i=1

MP∑
j=1

δij)

c|ρ ∼ G(
1

2
+ 1, 1 + ρ)

As for the MCMC inference on shape parameters a and b in (11) Let
ã = ln(a), b̃ = ln(b). The conditional posterior distributions of them are

ã|θ, δ ∝
T∏
i=1

MP∏
j=1

G(θij|a, δij)Exp(a|1)|∂ exp(ã)

∂ã
| , (22)

b̃|δ, ρ ∝
T∏
i=1

MP∏
j=1

G(δij|b, ρ)Exp(b|1)|∂ exp(b̃)

∂b̃
| . (23)

We recursively sample ã and b̃ via adaptive Metropolis Hasting [48]. Specifi-
cally, for each of them, we assume the proposal distribution given at iteration
n is given by Qn(x, ·) = N (x, σ2

n). And we set σ2
n = 1 when n ≤ 50, and

after 50 iteration we update it by

σ2
n =

{
σ2
n−1 exp(δ(n)) acceptances of the variable is more than 0.44 ,

σ2
n−1 exp(−δ(n)) acceptances of the variable is less than 0.44 .

(24)

to make the acceptance rate of proposals for the variable as close as possible
to 0.44 [23, 49]. And δ(n) = min(0.01, n−1/2).

B Synthetic result

B.1 Root mean square error on A in terms of posterior
median
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Table 5: Root mean square errors on coefficient matrix A for different sim-
ulation scenarios with T = 50.

S20 S50 I20 I50 D20 D50

NG(G) 0.229 (0.542) 0.067 (0.032) 0.235 (0.762) 0.057 (0.009) 0.169 (0.486) 0.065 (0.076)
NG(C) 0.057 (0.042) 0.055 (0.020) 0.071 (0.069) 0.066 (0.030) 0.045 (0.012) 0.066 (0.148)
NG(R) 0.048 (0.012) 0.046 (0.005) 0.056 (0.011) 0.057 (0.005) 0.043 (0.010) 0.046 (0.025)
HS(G) 0.223 (0.514) 0.044 (0.009) 0.174 (0.600) 0.062 (0.008) 0.324 (0.926) 0.043 (0.066)
HS(C) 0.084 (0.043) 0.066 (0.030) 0.093 (0.032) 0.071 (0.016) 0.089 (0.141) 0.084 (0.170)
HS(R) 0.082 (0.035) 0.057 (0.013) 0.091 (0.027) 0.069 (0.012) 0.064 (0.023) 0.053 (0.033)
SSVS 0.148 (0.059) 0.210 (0.193) 0.151 (0.060) 0.125 (0.135) 0.185 (0.190) 0.234 (0.285)
Minnesota 0.069 (0.042) 0.083 (0.043) 0.134 (0.054) 0.114 (0.022) 0.055 (0.038) 0.074 (0.043)
TPBN MCMC(G) 0.032 (0.010) 0.029 (0.005) 0.047 (0.007) 0.048 (0.005) 0.025 (0.011) 0.019 (0.004)
TPBN MCMC(C) 0.034 (0.008) 0.030 (0.005) 0.050 (0.009) 0.052 (0.006) 0.026 (0.009) 0.020 (0.003)
TPBN MCMC(R) 0.047 (0.011) 0.041 (0.006) 0.052 (0.009) 0.051 (0.004) 0.039 (0.010) 0.030 (0.004)
TPBN MCEM(G) 0.032 (0.010) 0.029 (0.005) 0.046 (0.008) 0.048 (0.005) 0.025 (0.011) 0.019 (0.003)
TPBN MCEM(C) 0.034 (0.007) 0.030 (0.005) 0.049 (0.009) 0.051 (0.007) 0.026 (0.009) 0.019 (0.003)
TPBN MCEM(R) 0.039 (0.010) 0.040 (0.005) 0.049 (0.008) 0.051 (0.004) 0.033 (0.010) 0.030 (0.004)

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior. G refers
to global, C refers to columnwise and R refers to rowwise.

Table 6: Root mean square errors on coefficient matrix A for different sim-
ulation scenarios with T = 150.

S20 S50 I20 I50 D20 D50

NG(G) 0.324 (0.592) 0.114 (0.410) 0.245 (0.381) 0.050 (0.032) 0.133 (0.366) 0.068 (0.153)
NG(C) 0.057 (0.049) 0.058 (0.072) 0.055 (0.025) 0.054 (0.026) 0.059 (0.080) 0.067 (0.120)
NG(R) 0.038 (0.012) 0.031 (0.006) 0.049 (0.013) 0.043 (0.009) 0.038 (0.016) 0.031 (0.007)
HS(G) 0.332 (0.521) 0.124 (0.338) 0.353 (0.367) 0.219 (0.462) 0.305 (0.448) 0.207 (0.447)
HS(C) 0.134 (0.112) 0.114 (0.202) 0.138 (0.090) 0.079 (0.026) 0.111 (0.083) 0.130 (0.197)
HS(R) 0.131 (0.103) 0.067 (0.042) 0.129 (0.053) 0.074 (0.017) 0.104 (0.060) 0.074 (0.056)
SSVS 0.130 (0.123) 0.125 (0.134) 0.143 (0.069) 0.090 (0.018) 0.104 (0.069) 0.179 (0.234)
Minnesota 0.120 (0.108) 0.089 (0.072) 0.183 (0.140) 0.108 (0.027) 0.060 (0.059) 0.071 (0.046)
TPBN MCMC(G) 0.022 (0.010) 0.019 (0.004) 0.040 (0.012) 0.037 (0.005) 0.021 (0.007) 0.017 (0.004)
TPBN MCMC(C) 0.027 (0.019) 0.020 (0.006) 0.042 (0.010) 0.041 (0.009) 0.023 (0.006) 0.018 (0.003)
TPBN MCMC(R) 0.039 (0.012) 0.032 (0.006) 0.049 (0.013) 0.042 (0.006) 0.035 (0.016) 0.028 (0.004)
TPBN MCEM(G) 0.022 (0.009) 0.019 (0.004) 0.039 (0.010) 0.038 (0.007) 0.021 (0.006) 0.017 (0.004)
TPBN MCEM(C) 0.025 (0.016) 0.020 (0.008) 0.040 (0.011) 0.041 (0.010) 0.022 (0.007) 0.017 (0.002)
TPBN MCEM(R) 0.029 (0.011) 0.028 (0.005) 0.042 (0.012) 0.041 (0.008) 0.029 (0.009) 0.027 (0.004)

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior. G refers
to global, C refers to columnwise and R refers to rowwise.
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Table 7: Root mean square errors on coefficient matrix A for different sim-
ulation scenarios with T = 250.

S20 S50 I20 I50 D20 D50

NG(G) 0.198 (0.321) 0.206 (0.420) 0.251 (0.312) 0.093 (0.260) 0.260 (0.387) 0.120 (0.271)
NG(C) 0.042 (0.020) 0.046 (0.047) 0.065 (0.049) 0.049 (0.027) 0.043 (0.033) 0.064 (0.083)
NG(R) 0.034 (0.012) 0.027 (0.008) 0.048 (0.020) 0.038 (0.006) 0.034 (0.015) 0.027 (0.004)
HS(G) 0.225 (0.290) 0.240 (0.456) 0.248 (0.263) 0.233 (0.351) 0.323 (0.398) 0.179 (0.335)
HS(C) 0.128 (0.085) 0.070 (0.067) 0.132 (0.086) 0.091 (0.059) 0.120 (0.103) 0.089 (0.090)
HS(R) 0.115 (0.075) 0.057 (0.018) 0.122 (0.063) 0.077 (0.025) 0.107 (0.073) 0.060 (0.029)
SSVS 0.131 (0.125) 0.102 (0.109) 0.139 (0.121) 0.089 (0.037) 0.117 (0.104) 0.126 (0.122)
Minnesota 0.109 (0.102) 0.071 (0.029) 0.145 (0.093) 0.119 (0.069) 0.075 (0.087) 0.057 (0.040)
TPBN MCMC(G) 0.019 (0.010) 0.015 (0.004) 0.038 (0.019) 0.032 (0.006) 0.019 (0.006) 0.015 (0.002)
TPBN MCMC(C) 0.019 (0.008) 0.015 (0.003) 0.039 (0.014) 0.035 (0.007) 0.021 (0.007) 0.015 (0.001)
TPBN MCMC(R) 0.037 (0.014) 0.031 (0.011) 0.045 (0.019) 0.038 (0.007) 0.031 (0.008) 0.025 (0.003)
TPBN MCEM(G) 0.019 (0.009) 0.016 (0.005) 0.037 (0.016) 0.032 (0.005) 0.019 (0.006) 0.015 (0.002)
TPBN MCEM(C) 0.019 (0.009) 0.016 (0.005) 0.038 (0.015) 0.034 (0.008) 0.020 (0.007) 0.015 (0.001)
TPBN MCEM(R) 0.025 (0.011) 0.025 (0.006) 0.040 (0.018) 0.035 (0.005) 0.024 (0.007) 0.024 (0.003)

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior. G refers
to global, C refers to columnwise and R refers to rowwise.
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B.2 Average hit rate on A in terms of DSS estimates

Table 8: Average hit rate on coefficient matrix A for different simulation
scenarios with T = 50.

S20 S50 I20 I50 D20 D50

NG(G) 0.873 (0.077) 0.987 (0.008) 0.884 (0.075) 0.988 (0.014) 0.884 (0.072) 0.989 (0.010)
NG(C) 0.864 (0.059) 0.990 (0.010) 0.886 (0.078) 0.990 (0.012) 0.856 (0.059) 0.985 (0.014)
NG(R) 0.867 (0.052) 0.986 (0.010) 0.859 (0.069) 0.982 (0.016) 0.854 (0.061) 0.979 (0.013)
HS(G) 0.827 (0.043) 0.978 (0.010) 0.816 (0.048) 0.972 (0.013) 0.816 (0.048) 0.971 (0.011)
HS(C) 0.807 (0.046) 0.974 (0.011) 0.815 (0.039) 0.969 (0.012) 0.820 (0.048) 0.974 (0.012)
HS(R) 0.798 (0.048) 0.964 (0.010) 0.805 (0.041) 0.962 (0.015) 0.810 (0.045) 0.969 (0.012)
SSVS 0.803 (0.038) 0.982 (0.009) 0.807 (0.044) 0.975 (0.012) 0.802 (0.048) 0.983 (0.009)
Minnesota 0.901 (0.044) 0.988 (0.005) 0.835 (0.043) 0.982 (0.007) 0.904 (0.032) 0.989 (0.005)
TPBN MCMC(G) 0.931 (0.053) 0.998 (0.004) 0.905 (0.063) 0.991 (0.009) 0.918 (0.050) 0.995 (0.005)
TPBN MCMC(C) 0.944 (0.044) 0.999 (0.002) 0.915 (0.062) 0.995 (0.004) 0.924 (0.044) 0.996 (0.004)
TPBN MCMC(R) 0.857 (0.055) 0.988 (0.008) 0.864 (0.076) 0.986 (0.013) 0.859 (0.069) 0.986 (0.011)
TPBN MCEM(G) 0.931 (0.049) 0.998 (0.003) 0.911 (0.058) 0.993 (0.009) 0.918 (0.044) 0.995 (0.005)
TPBN MCEM(C) 0.936 (0.041) 0.998 (0.003) 0.911 (0.056) 0.995 (0.005) 0.927 (0.045) 0.996 (0.003)
TPBN MCEM(R) 0.878 (0.049) 0.990 (0.008) 0.877 (0.065) 0.986 (0.013) 0.869 (0.058) 0.984 (0.011)

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior. G refers
to global, C refers to columnwise and R refers to rowwise.

30



Table 9: Average hit rate on coefficient matrix A for different simulation
scenarios with T = 150.

S20 S50 I20 I50 D20 D50

NG(G) 0.821 (0.108) 0.934 (0.034) 0.808 (0.102) 0.922 (0.041) 0.818 (0.073) 0.910 (0.031)
NG(C) 0.837 (0.058) 0.936 (0.032) 0.832 (0.066) 0.911 (0.038) 0.827 (0.068) 0.911 (0.036)
NG(R) 0.841 (0.070) 0.928 (0.035) 0.829 (0.076) 0.900 (0.040) 0.799 (0.071) 0.891 (0.032)
HS(G) 0.821 (0.065) 0.922 (0.026) 0.793 (0.060) 0.902 (0.033) 0.806 (0.055) 0.923 (0.023)
HS(C) 0.827 (0.036) 0.905 (0.030) 0.800 (0.042) 0.892 (0.024) 0.817 (0.050) 0.914 (0.031)
HS(R) 0.818 (0.036) 0.884 (0.025) 0.797 (0.039) 0.879 (0.026) 0.803 (0.054) 0.890 (0.032)
SSVS 0.851 (0.049) 0.904 (0.029) 0.832 (0.047) 0.890 (0.036) 0.828 (0.054) 0.906 (0.032)
Minnesota 0.883 (0.050) 0.943 (0.020) 0.816 (0.039) 0.897 (0.023) 0.898 (0.053) 0.956 (0.014)
TPBN MCMC(G) 0.932 (0.058) 0.973 (0.020) 0.868 (0.062) 0.931 (0.030) 0.901 (0.060) 0.964 (0.024)
TPBN MCMC(C) 0.944 (0.042) 0.977 (0.017) 0.903 (0.054) 0.946 (0.023) 0.914 (0.045) 0.969 (0.023)
TPBN MCMC(R) 0.827 (0.067) 0.912 (0.040) 0.807 (0.068) 0.884 (0.033) 0.797 (0.084) 0.878 (0.031)
TPBN MCEM(G) 0.931 (0.053) 0.968 (0.019) 0.885 (0.056) 0.934 (0.028) 0.910 (0.050) 0.958 (0.022)
TPBN MCEM(C) 0.934 (0.044) 0.972 (0.016) 0.900 (0.049) 0.943 (0.022) 0.914 (0.041) 0.960 (0.021)
TPBN MCEM(R) 0.874 (0.062) 0.928 (0.031) 0.855 (0.057) 0.911 (0.033) 0.835 (0.063) 0.896 (0.026)

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior. G refers
to global, C refers to columnwise and R refers to rowwise.

Table 10: Average hit rate on coefficient matrix A for different simulation
scenarios with T = 250.

S20 S50 I20 I50 D20 D50

NG(G) 0.826 (0.092) 0.914 (0.046) 0.790 (0.108) 0.920 (0.036) 0.790 (0.102) 0.907 (0.030)
NG(C) 0.841 (0.062) 0.928 (0.033) 0.826 (0.063) 0.916 (0.034) 0.822 (0.064) 0.913 (0.042)
NG(R) 0.841 (0.064) 0.923 (0.034) 0.818 (0.061) 0.905 (0.030) 0.808 (0.069) 0.893 (0.035)
HS(G) 0.803 (0.056) 0.912 (0.030) 0.785 (0.063) 0.893 (0.040) 0.822 (0.063) 0.917 (0.030)
HS(C) 0.804 (0.037) 0.900 (0.026) 0.801 (0.037) 0.890 (0.023) 0.813 (0.053) 0.903 (0.033)
HS(R) 0.795 (0.035) 0.883 (0.027) 0.793 (0.039) 0.878 (0.024) 0.805 (0.049) 0.883 (0.033)
SSVS 0.848 (0.044) 0.911 (0.024) 0.831 (0.051) 0.898 (0.037) 0.848 (0.046) 0.914 (0.025)
Minnesota 0.857 (0.055) 0.939 (0.017) 0.789 (0.038) 0.886 (0.022) 0.888 (0.064) 0.956 (0.015)
TPBN MCMC(G) 0.924 (0.063) 0.968 (0.029) 0.861 (0.058) 0.938 (0.025) 0.907 (0.059) 0.961 (0.019)
TPBN MCMC(C) 0.946 (0.042) 0.977 (0.018) 0.898 (0.042) 0.947 (0.024) 0.928 (0.038) 0.967 (0.017)
TPBN MCMC(R) 0.814 (0.069) 0.898 (0.037) 0.804 (0.065) 0.896 (0.038) 0.792 (0.068) 0.877 (0.038)
TPBN MCEM(G) 0.932 (0.048) 0.969 (0.023) 0.888 (0.047) 0.943 (0.021) 0.912 (0.043) 0.957 (0.018)
TPBN MCEM(C) 0.943 (0.040) 0.972 (0.019) 0.901 (0.042) 0.946 (0.022) 0.916 (0.042) 0.960 (0.018)
TPBN MCEM(R) 0.880 (0.051) 0.926 (0.034) 0.856 (0.053) 0.918 (0.026) 0.848 (0.059) 0.898 (0.028)

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior. G refers
to global, C refers to columnwise and R refers to rowwise.
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B.3 Root mean square error on A in terms of DSS
estimates

Table 11: Root mean square errors on non-zero entries of A for different
simulation scenarios with T = 50.

S20 S50 I20 I50 D20 D50

NG(G) 1.240 (2.515) 158.782 (380.134) 68.381 (450.56) 21.421 (67.354) 5.594 (35.332) 134.862 (294.822)
NG(C) 0.283 (0.423) 0.538 (0.672) 0.202 (0.240) 0.199 (0.120) 0.104 (0.036) 0.193 (0.759)
NG(R) 0.197 (0.081) 0.291 (0.065) 0.141 (0.044) 0.153 (0.035) 0.097 (0.034) 0.089 (0.038)
HS(G) 0.915 (1.957) 0.447 (0.210) 1.649 (6.929) 0.252 (0.183) 1.273 (3.455) 0.172 (0.183)
HS(C) 0.366 (0.244) 0.837 (0.667) 0.277 (0.121) 0.377 (0.491) 0.295 (0.449) 0.339 (0.619)
HS(R) 0.310 (0.162) 0.556 (0.281) 0.244 (0.087) 0.267 (0.063) 0.174 (0.091) 0.231 (0.135)
SSVS 0.433 (0.230) 2.100 (2.358) 0.335 (0.193) 0.436 (0.425) 0.335 (0.345) 0.630 (0.707)
Minnesota 0.257 (0.157) 0.856 (0.556) 0.288 (0.139) 0.384 (0.104) 0.116 (0.098) 0.249 (0.161)
TPBN MCMC(G) 0.133 (0.054) 0.210 (0.035) 0.121 (0.042) 0.133 (0.029) 0.047 (0.032) 0.032 (0.014)
TPBN MCMC(C) 0.163 (0.063) 0.240 (0.063) 0.128 (0.052) 0.157 (0.058) 0.053 (0.032) 0.042 (0.032)
TPBN MCMC(R) 0.198 (0.071) 0.299 (0.084) 0.139 (0.034) 0.146 (0.033) 0.099 (0.041) 0.069 (0.030)
TPBN MCEM(G) 0.132 (0.050) 0.211 (0.037) 0.115 (0.027) 0.133 (0.028) 0.046 (0.031) 0.031 (0.012)
TPBN MCEM(C) 0.146 (0.049) 0.234 (0.059) 0.129 (0.058) 0.158 (0.069) 0.053 (0.037) 0.039 (0.027)
TPBN MCEM(R) 0.180 (0.055) 0.288 (0.072) 0.131 (0.032) 0.146 (0.031) 0.084 (0.033) 0.068 (0.025)

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior. G refers
to global, C refers to columnwise and R refers to rowwise.
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Table 12: Root mean square errors on non-zero entries of A for different
simulation scenarios with T = 150.

S20 S50 I20 I50 D20 D50

NG(G) 1.423 (2.456) 1.179 (3.730) 0.859 (1.405) 0.214 (0.219) 0.461 (1.315) 0.340 (1.077)
NG(C) 0.228 (0.186) 0.460 (0.658) 0.158 (0.094) 0.206 (0.164) 0.158 (0.327) 0.213 (0.455)
NG(R) 0.159 (0.068) 0.186 (0.054) 0.132 (0.049) 0.139 (0.065) 0.084 (0.040) 0.087 (0.063)
HS(G) 1.230 (2.061) 0.785 (2.431) 0.961 (1.064) 0.826 (1.977) 0.753 (1.224) 0.735 (1.848)
HS(C) 0.530 (0.358) 0.685 (1.141) 0.366 (0.237) 0.277 (0.192) 0.279 (0.217) 0.383 (0.519)
HS(R) 0.440 (0.263) 0.369 (0.252) 0.307 (0.100) 0.220 (0.085) 0.228 (0.105) 0.236 (0.212)
SSVS 0.468 (0.346) 0.864 (0.942) 0.324 (0.117) 0.259 (0.089) 0.217 (0.134) 0.586 (0.836)
Minnesota 0.425 (0.354) 0.496 (0.426) 0.401 (0.390) 0.291 (0.111) 0.112 (0.103) 0.162 (0.094)
TPBN MCMC(G) 0.104 (0.059) 0.125 (0.058) 0.115 (0.052) 0.116 (0.042) 0.056 (0.073) 0.039 (0.039)
TPBN MCMC(C) 0.126 (0.075) 0.159 (0.087) 0.119 (0.045) 0.135 (0.067) 0.044 (0.021) 0.044 (0.035)
TPBN MCMC(R) 0.166 (0.064) 0.217 (0.076) 0.139 (0.050) 0.138 (0.038) 0.087 (0.043) 0.091 (0.045)
TPBN MCEM(G) 0.097 (0.044) 0.124 (0.051) 0.104 (0.042) 0.119 (0.051) 0.041 (0.024) 0.034 (0.017)
TPBN MCEM(C) 0.115 (0.066) 0.151 (0.084) 0.113 (0.052) 0.137 (0.078) 0.044 (0.026) 0.037 (0.022)
TPBN MCEM(R) 0.143 (0.061) 0.204 (0.068) 0.118 (0.048) 0.141 (0.061) 0.069 (0.031) 0.086 (0.041)

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior. G refers
to global, C refers to columnwise and R refers to rowwise.

Table 13: Root mean square errors on non-zero entries of A for different
simulation scenarios with T = 250.

S20 S50 I20 I50 D20 D50

NG(G) 0.948 (1.583) 2.044 (4.231) 0.830 (1.077) 0.503 (1.575) 0.802 (1.265) 0.532 (1.367)
NG(C) 0.191 (0.129) 0.365 (0.457) 0.194 (0.166) 0.188 (0.155) 0.107 (0.117) 0.213 (0.315)
NG(R) 0.148 (0.070) 0.199 (0.148) 0.140 (0.075) 0.127 (0.034) 0.086 (0.068) 0.065 (0.026)
HS(G) 0.847 (1.349) 2.114 (5.000) 0.713 (0.879) 0.867 (1.583) 0.780 (1.082) 0.622 (1.332)
HS(C) 0.441 (0.289) 0.616 (1.241) 0.352 (0.230) 0.325 (0.369) 0.293 (0.268) 0.264 (0.279)
HS(R) 0.372 (0.217) 0.344 (0.200) 0.299 (0.158) 0.229 (0.093) 0.231 (0.170) 0.180 (0.107)
SSVS 0.456 (0.400) 0.825 (1.362) 0.341 (0.275) 0.255 (0.111) 0.248 (0.206) 0.354 (0.361)
Minnesota 0.320 (0.253) 0.418 (0.205) 0.322 (0.212) 0.336 (0.254) 0.144 (0.167) 0.134 (0.089)
TPBN MCMC(G) 0.100 (0.066) 0.159 (0.186) 0.119 (0.073) 0.115 (0.074) 0.044 (0.039) 0.028 (0.011)
TPBN MCMC(C) 0.102 (0.053) 0.159 (0.088) 0.113 (0.057) 0.120 (0.044) 0.041 (0.028) 0.031 (0.013)
TPBN MCMC(R) 0.164 (0.086) 0.229 (0.129) 0.135 (0.069) 0.140 (0.045) 0.087 (0.051) 0.081 (0.040)
TPBN MCEM(G) 0.097 (0.068) 0.145 (0.095) 0.101 (0.062) 0.106 (0.038) 0.040 (0.028) 0.029 (0.010)
TPBN MCEM(C) 0.104 (0.063) 0.164 (0.099) 0.109 (0.064) 0.117 (0.053) 0.040 (0.028) 0.031 (0.011)
TPBN MCEM(R) 0.129 (0.073) 0.218 (0.100) 0.115 (0.061) 0.125 (0.033) 0.064 (0.035) 0.072 (0.033)

NOTES: NG refers to a vector autoregressive model with a normal gamma prior, HS to
the Horseshoe prior. SSVS to stochastic search variable selection prior, Minnesota to

hierarchical Minnesota prior and TPBN to three-parameter-beta-normal prior. G refers
to global, C refers to columnwise and R refers to rowwise.
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C Forecasting results on macroeconomic data

We provide the full forecasting results on the macroeconomic data in Ta-
ble 14, Table 15. We haven’t completed the experiment for the large version
yet.

Table 14: Log Predictive Scores on the macroeconomic datatset for
the“small” case.

FH = 1 FH = 2 FH = 3 FH = 4

NG (G) 12.721 11.800 11.198 10.842
NG (C) 12.706 11.769 11.181 10.841
NG (R) 12.697 11.761 11.167 10.820
HS (G) 12.927 12.205 11.582 11.201
HS (C) 12.869 12.128 11.527 11.150
HS (R) 12.866 12.170 11.553 11.173
SSVS 13.047 12.293 11.658 11.252
Minnesota 12.962 12.241 11.630 11.272
TPBN MCMC (G) 12.859 12.133 11.515 11.136
TPBN MCMC (C) 12.978 12.178 11.537 11.157
TPBN MCMC (R) 12.810 12.038 11.432 11.075
TPBN MCEM (G) 12.970 12.171 11.548 11.175
TPBN MCEM (C) 12.981 12.170 11.560 11.171
TPBN MCEM (R) 12.932 12.184 11.555 11.167

NOTES: FH stands for forecast horizon. NG refers to a vector autoregressive model with
a normal gamma prior, HS to the Horseshoe prior. SSVS to stochastic search variable

selection prior, Minnesota to hierarchical Minnesota prior and TPBN to
three-parameter-beta-normal prior. G refers to global, C refers to columnwise and R

refers to rowwise.

34



Table 15: Log predictive scores on the macroeconomic datatset - for the
“medium” case.

FH = 1 FH = 2 FH = 3 FH = 4

NG (G) 27.028 26.138 25.489 25.118
NG (C) 27.000 26.090 25.490 25.094
NG (R) 27.002 26.118 25.464 25.022
HS (G) 26.850 26.499 25.868 25.347
HS (C) 26.732 26.356 25.778 25.343
HS (R) 26.837 26.435 25.842 25.329
SSVS 27.067 26.492 25.752 25.153
Minnesota 26.910 26.528 25.697 25.264
TPBN MCMC (G) 26.944 26.324 25.684 25.177
TPBN MCMC (C) 27.056 26.479 25.894 25.428
TPBN MCMC (R) 26.488 25.969 25.425 24.967
TPBN MCEM (G) 27.127 26.492 25.888 25.361
TPBN MCEM (C) 27.142 26.464 25.897 25.408
TPBN MCEM (R) 27.001 26.437 25.850 25.391

NOTES: FH stands for forecast horizon. NG refers to a vector autoregressive model with
a normal gamma prior, HS to the Horseshoe prior. SSVS to stochastic search variable

selection prior, Minnesota to hierarchical Minnesota prior and TPBN to
three-parameter-beta-normal prior. G refers to global, C refers to columnwise and R

refers to rowwise.
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Table 16: Log predictive scores on the macroeconomic datatset - for the
“large” case.

FH = 1 FH = 2 FH = 3 FH = 4

NG (G) 67.288 66.374 65.179 64.661
NG (C) 65.949 65.872 64.755 64.311
NG (R) 50.119 48.812 48.742 49.741
HS (G) 64.764 68.843 68.636 68.141
HS (C) 57.719 65.124 66.216 66.574
HS (R) 61.099 67.148 66.195 70.106
SSVS 64.780 68.757 67.888 67.717
Minnesota 57.180 67.246 66.825 66.750
TPBN MCMC (G) 68.634 69.299 69.371 68.447
TPBN MCMC (C) 68.795 70.139 69.801 68.828
TPBN MCMC (R) 60.720 61.551 63.032 65.690

NOTES: FH stands for forecast horizon. NG refers to a vector autoregressive model with
a normal gamma prior, HS to the Horseshoe prior. SSVS to stochastic search variable

selection prior, Minnesota to hierarchical Minnesota prior and TPBN to
three-parameter-beta-normal prior. G refers to global, C refers to columnwise and R

refers to rowwise.
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Figure 1: Boxplots of average log predictive density over 50 runs for different
models in the small version of macroeconomic dataset.

Figure 2: Boxplots of average log predictive density over 50 runs for different
models in the medium version of macroeconomic dataset.

We also provide the boxplots over 50 runs in the subsets of the datasets
with different dimensions sizes. The boxplots for small, and medium version
are displayed in Figure 1, Figure 2. Comparing TPBN with other global-local
prior based models, we find that TPBN and HS performs notably better than
NG approach. Moreover, comparing TPBN with SSVS and Minnesota prior,
TPBN has notably equal or smaller variance than those models.
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